Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[Fisica 1] CHOQUE PLASTICO en RIGIDO
Autor Mensaje
CarooLina Sin conexión
Colaborador

********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 3.743
Agradecimientos dados: 1.496
Agradecimientos: 1.686 en 547 posts
Registro en: Sep 2010
Mensaje: #1
[Fisica 1] CHOQUE PLASTICO en RIGIDO Finales Física I
Hola! queria saber si cuando dado el caso que tengo una barra/disco y queda incrustrada la bala o lo quesea.. cambia el Icm? o como es tan "minimo" hago como si no pasa nada... por ejemplo, una bala que se incrustra en un cilindro y choca perpendicularmete en el borde.

Lf =\[I_{cm}*W+m*v*r\]

Y por lo general lo que hago/hacen ya que v=w*r

\[I_{cm}*W+m*v*r=I_{cm}*W+m*w*r*r=I_{cm}*W+m*w*r^{2}\]

Pero nada mas, entonces.. el Icm cambia? o se "desprecia" ese cambio

love
30-01-2016 20:27
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Pipicito Sin conexión
Campeon del cubo Rubik
Sin estado :(
****

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 107
Agradecimientos dados: 12
Agradecimientos: 28 en 16 posts
Registro en: Jan 2015
Mensaje: #2
RE: [Fisica 1] CHOQUE PLASTICO en RIGIDO
Si la masa de la bala es despreciable respecto de la del cilindro podés suponer que el momento de inercia del cilindro con la bala incrustada es igual al del cilindro solo. Si no fuera despreciable la masa de la bala te quedaría así el nuevo momento de inercia: \[I' = I + mr^2\], con \[I\] el momento de inercia del cilindro y \[r\] la distancia perpendicular medida desde punto en el que quedó incrustada la bala hasta eje de rotación(o sea, el radio del cilindro si la bala no penetró y quedó pegada superficialmente).

Otra cosa, si considerás un cilindro que rota alrededor de un eje longitudinal que pasa por su centro y la bala choca perpendicularmente al cilindro, no va a aumentar/disminuir el momento angular del cilindro después del choque(el momento de la bala se lo fuma el eje del cilindro). Para que haya cambio en el momento angular del cilindro tiene que ser tangencial el choque. Pensá en esos exhibidores de tarjetas(las típicas que te vende alguien el el subte que tienen dibujado un ser con nariz roja con frases tipo "eres mi mejor amigo") que cuando los queres rotar para ir viendo todas las tarjetas no hacés fuerza perpendicularmente al eje, la hacés tangencial para que vaya girando.
31-01-2016 14:28
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Pipicito recibio 2 Gracias por este post
CarooLina (31-01-2016), camm-ii (31-01-2016)
CarooLina Sin conexión
Colaborador

********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 3.743
Agradecimientos dados: 1.496
Agradecimientos: 1.686 en 547 posts
Registro en: Sep 2010
Mensaje: #3
RE: [Fisica 1] CHOQUE PLASTICO en RIGIDO
Pipicito

Las masas de las balas siempre te las dan, no se si asi y todo se pueden considerar despreciables. El m que vos decis es de la bala o del cilindro? De ser el de la bala es lo que yo puse ahi arriba, que pones L de la bala y como v=w*r llegas a eso... pero yo no estoy segura si ademas tenes que agregarle otra cosa.

muchas gracias! =)

love
31-01-2016 15:27
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Pipicito Sin conexión
Campeon del cubo Rubik
Sin estado :(
****

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 107
Agradecimientos dados: 12
Agradecimientos: 28 en 16 posts
Registro en: Jan 2015
Mensaje: #4
RE: [Fisica 1] CHOQUE PLASTICO en RIGIDO
Hago el ejemplo poniéndole nombres a las cosas así queda claro lo que quiero decir. Ponele que tenés un cilindro de masa \[M\] y radio \[r\] rotando con velocidad angular constante \[\omega _ 0\] alrededor de un eje longitudinal que pasa por su centro de masa. Viene volando a velocidad constante \[v_0\] una bala de masa \[m\] que impacta el cilindro tangencialmente. El choque es plástico y la bala queda pegada a la superficie del cilindro, que después de la colisión sigue rotando con velocidad angular \[\omega_f\].

Asumiendo que se conserva el momento angular podés dar una expresión para \[\omega_f\] en términos de los datos del problema. Para el sistema formado por la bala y el cilindro, el momento angular inicial es la suma de los momentos angulares iniciales:

\[L_0 = I_{cil} \ \omega_0 + r m v_0\]

Para convencerte de que el momento angular inicial de la bala es \[ r m v_0\] hacé un dibujo y usá que \[\overline{L} = \overline{r} \times \overline{p}\].

Después del choque podés pensar el sistema formado por la bala y el cilindro como un sistema formado por un único cuerpo que es el cilindro con la bala incrustada. Para este "nuevo" cuerpo el momento de inercia es \[I_{cil + bala} = I_{cil} + mr^2\]. El momento angular del sistema después del choque queda:

\[L_f = I_{cil + bala} \ \omega_f = (I_{cil} + mr^2 ) \omega_f\]

Como suponemos que se conserva el momento angular podés dar una expresión para \[\omega_f\] despejándolo de \[L_0 = L_f\]. Usando que \[I_{cil} = Mr^2\] te queda:
\[\omega_f = \frac{Mr\omega_0 + mv_0}{r(M + m)}\]

Un par de observaciones:
  1. Si justo pasa que \[v_0 = r \omega_0 \] entonces te queda \[\omega_0 = \omega_f\]. Tiene sentido, es como que la velocidad de la bala estaba calibrada para ser la velocidad que tendría si estuviera rotando pegada sobre la superficie del cilindro. De hecho, podés pensar el choque al revés para convencerte: si inicialmente la bala está pegada al cilindro que gira con velocidad angular constante \[\omega_0\] y un momento la bala se despega del cilindro, entonces sale disparada con velocidad inicial \[v_0 = r \omega_0 \] tangencial al cilindro.
  2. Podría pasar que la bala fuera en contra del movimiento del cilindro. Es el caso en el que los \[L\] iniciales tienen signo distinto. En una situación así el choque frena un poco la rotación del cilindro o incluso podría llegar a cambiarle el sentido a la rotación(si el momento de la bala es suficiente para compensar el del cilindro y un poco más)
  3. Puede pasar que no se conserve el momento angular en el choque. Un problema así tendrías si te dieran también la velocidad angular después del choque. En ese caso tendrías que comparar el \[L_f\] calculado con los datos como si se conservara el momento y el \[L_f\] calculado con la velocidad angular final real(el dato que te dan en el problema). La diferencia se explica por torques de fuerzas externas, por ejemplo un motor en el eje o algo así.
31-01-2016 19:24
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Pipicito recibio 2 Gracias por este post
rod77 (01-02-2016), CarooLina (01-02-2016)
CarooLina Sin conexión
Colaborador

********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 3.743
Agradecimientos dados: 1.496
Agradecimientos: 1.686 en 547 posts
Registro en: Sep 2010
Mensaje: #5
RE: [Fisica 1] CHOQUE PLASTICO en RIGIDO
Excelente =) muchísimas gracias por el tiempo!!

love
(Este mensaje fue modificado por última vez en: 01-02-2016 22:10 por CarooLina.)
01-02-2016 22:10
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 2 invitado(s)