Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[Consulta] TP2 - ejercicio 30.
Autor Mensaje
Francomp Sin conexión
Militante
Comienza la carrera!
***

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 99
Agradecimientos dados: 23
Agradecimientos: 2 en 2 posts
Registro en: Jan 2012
Mensaje: #1
[Consulta] TP2 - ejercicio 30. Ejercicios Análisis Matemático I
Hola que tal, tengo dificultades para resolver estos ejercicios de la guía de Análisis I.

TP2:

30) f)

\[\lim_{x\rightarrow 0} \frac{a^{x}-1}{x} = \lim_{x\rightarrow 0} ln (a^{x}-1) - ln (x) = ln L\]

En principio lo pensé así, pero no se como seguirlo.. hay alguna otra forma?

30) i)

\[\lim_{x\rightarrow 0} \frac{e^{x}-1}{sen 2x} \]

En este hago cambio de variable, considero t = (e^x) - 1 y de allí --> x= ln(t+1) .. reemplazo pero me pierdo más!

30) n)

\[\lim_{x\rightarrow \infty } \frac{\frac{sen x}{x}}{1+ cos^{2}x} \]

y este me dejo perplejo...


Solo quiero saber qué puedo hacer para plantearlos.. ya que hay algo que no estoy viendo..
Gracias de todas formas!
(Este mensaje fue modificado por última vez en: 26-04-2013 10:34 por Brich.)
23-04-2013 19:39
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #2
RE: Ayuda con TP2
en este th deberian estar resueltos

http://www.utnianos.com.ar/foro/tema-apo...-4-5-6-7-8

y por aca algo sobre infinitesimos... por si te interesa... cuando tenes limites como los que preguntas son muy utiles

http://www.utnianos.com.ar/foro/tema-an%...C3%A9simos

23-04-2013 20:34
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Francomp Sin conexión
Militante
Comienza la carrera!
***

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 99
Agradecimientos dados: 23
Agradecimientos: 2 en 2 posts
Registro en: Jan 2012
Mensaje: #3
RE: Ayuda con TP2
Si me fije, pero esos ejercicios no están resueltos. ahora leo sobre infinitésimos.. de todas formas he visto ejercicios así pero estos no sé como sacarlos.

Acabo de sacar el i) de esa forma!, el n) no se puede porque es lim cuando x tiene a Inf. y el f) aplico pero nunca llego a la rta que es: ln a
(Este mensaje fue modificado por última vez en: 24-04-2013 19:34 por Francomp.)
24-04-2013 18:57
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #4
RE: Ayuda con TP2
(23-04-2013 19:39)Francomp escribió:  Hola que tal, tengo dificultades para resolver estos ejercicios de la guía de Análisis I.

TP2:

30) f)

\[\lim_{x\rightarrow 0} \frac{a^{x}-1}{x} = \lim_{x\rightarrow 0} ln (a^{x}-1) - ln (x) = ln L\]

En principio lo pensé así, pero no se como seguirlo.. hay alguna otra forma?

aplicando infinitesimos, observa que

\[a^x-1\approx x\ln a\Leftrightarrow x\to0\]

entonces

\[\lim_{x\to 0}\frac{a^x-1}{x}=\lim_{x\to 0}\frac{x\ln a}{x}=\ln a\]


Cita:30) i)

\[\lim_{x\rightarrow 0} \frac{e^{x}-1}{sen 2x} \]

En este hago cambio de variable, considero t = (e^x) - 1 y de allí --> x= ln(t+1) .. reemplazo pero me pierdo más!

leí que lo pudiste sacar thumbup3

Cita:30) n)

\[\lim_{x\rightarrow \infty } \frac{\frac{sen x}{x}}{1+ cos^{2}x} \]

y este me dejo perplejo...

si acomodamos terminos un poco tenes aplicando las propiedades de los limites

\[\lim_{x\to \infty }\underbrace{\underbrace{\frac{1}{x}}_{\to 0}\cdot\underbrace{\sin x}_{acotado}}_{0}\cdot\frac{\lim_{x\to \infty }1}{\lim_{x\to \infty }(1+\cos^2x)}\]

el

\[lim_{x\to \infty}(1+\cos ^2x)\]

esta acotado y va entre 1 y 2, por lo tanto

\[\underbrace{\frac{\lim_{x\to \infty }1}{\lim_{x\to \infty }(1+\cos^2x)}}_{constante}\]

luego

\[\lim_{x\to \infty }\dfrac{\dfrac{\sin x}{x}}{1+\cos^2x}=0\]


se entiende ???

(Este mensaje fue modificado por última vez en: 25-04-2013 10:40 por Saga.)
25-04-2013 10:36
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Saga recibio 1 Gracias por este post
Francomp (25-04-2013)
Francomp Sin conexión
Militante
Comienza la carrera!
***

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 99
Agradecimientos dados: 23
Agradecimientos: 2 en 2 posts
Registro en: Jan 2012
Mensaje: #5
RE: Ayuda con TP2
Entendí! Muchas gracias, después tengo que investigar más sobre infinitésimos.. en el post que hiciste me sirvo para varios ejercicios pero en el f que me explicaste por aca, ni sabia que (a^x-1) era x. ln a . Nuevamente te agradezco! Vos infinitésimos donde lo viste? Yo estaba usando Calculo de Stewart y por ahora no lei nada de eso.. Saludos!
25-04-2013 20:20
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #6
RE: Ayuda con TP2
genial.... sobre infinitesimos me los dieron en la cursada... de hecho en el apunte que deje sobre los mismos aclaro "si bien no le dan mucha bolilla en la cursada" algunos profes nos les dan mucha importancia, pero son de gran ayuda en limites donde te dicen "no use l'hopital"

25-04-2013 21:04
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Francomp Sin conexión
Militante
Comienza la carrera!
***

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 99
Agradecimientos dados: 23
Agradecimientos: 2 en 2 posts
Registro en: Jan 2012
Mensaje: #7
RE: [Consulta] TP2 - ejercicio 30.
Disculpa Saga, estoy haciendo algo mal? Porque me quedo trabado...

\[\lim_{x\rightarrow a} \frac{cos x - cos a}{x - a}\]

Hago cambio de variable , t= x - a, quedándome que x = t+a

\[\lim_{x\rightarrow a} \frac{cos (t+a) - cos a}{t} = \lim_{x\rightarrow a} \frac{cos t. cos a - sen t . sen a - cos a}{t}\]

Allí sen t / t = 1, quedándome:

\[\lim_{x\rightarrow a} \frac{cos t. cos a}{t} - \frac{sen a}{t} - \frac{cos a}{t}\]


y ahí me quedé... Probe con infinitésimos y no sale wall
(Este mensaje fue modificado por última vez en: 30-04-2013 19:33 por Francomp.)
30-04-2013 19:32
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #8
RE: [Consulta] TP2 - ejercicio 30.
(30-04-2013 19:32)Francomp escribió:  Disculpa Saga, estoy haciendo algo mal?

sep

Cita:\[\lim_{x\rightarrow a} \frac{cos x - cos a}{x - a}\]

Hago cambio de variable , t= x - a, quedándome que x = t+a

perfecto

Cita:\[\lim_{x\rightarrow a} \frac{cos (t+a) - cos a}{t} = \lim_{x\rightarrow a} \frac{cos t. cos a - sen t . sen a - cos a}{t}\]

regular... como distribuiste el argumento del coseno esta bien, pero te olvidaste que con el cambio de variable que hiciste t tiende a 0, nó es x el limite ahora, lo entendes

Despues no se que hiciste... lo continuo desde donde corte tu mensaje ... si sacamos factor comun \[\cos a\] tenemos

\[\frac{\cos a(\cos t-1)-\sin t\sin a}{t}\]

que es lo mismo que decir

\[\frac{\cos a(\cos t-1)}{t}-\frac{\sin t\sin a}{t}\]

por propiedadad de limites

\[\lim_{t\to 0}\frac{\cos a(\cos t-1)}{t}-\lim_{t\to 0}\frac{\sin t\sin a}{t}\]

al primer limite lo multiplicamos y dividimos por

\[\cos t +1\]

quedando

\[\lim_{t\to 0}\frac{\cos a(\cos t-1)(\cos t+1)}{t(\cos t+1)}-\lim_{t\to 0}\frac{\sin t\sin a}{t}\]

haciendo cuentas tenes que

\[\lim_{t\to 0}\frac{-\cos a\sin^2t}{t(\cos t+1)}=\lim_{t\to 0}\frac{-\cos a}{\cos t+1}\cdot \sin t\frac{\sin t}{t}\]

\[\frac{-\cos a}{\cos t+1}\] tiende a una constante

\[\sin t\] tiende a 0

\[\frac{\sin t}{t}\] tiende a 1

entonces

\[\lim_{t\to 0}\frac{-\cos a\sin^2t}{t(\cos t+1)}=0\]

luego

\[-\lim_{t\to 0}\frac{\sin t\sin a}{t}=-\sin a\]

finalmente

\[\lim_{x\to 0}\frac{\cos x-\cos a}{x-a}=-\sin a\]

lo entendes ??

(Este mensaje fue modificado por última vez en: 30-04-2013 23:16 por Saga.)
30-04-2013 23:05
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Saga recibio 2 Gracias por este post
Francomp (02-05-2013), alestek (27-04-2014)
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: