Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
Consulta sobre relación antisimetrica
Autor Mensaje
campodimarte Sin conexión
Militante
¬¬
***

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 53
Agradecimientos dados: 41
Agradecimientos: 4 en 4 posts
Registro en: Mar 2014
Mensaje: #1
Consulta sobre relación antisimetrica Dudas y recomendaciones Matemática Discreta
Quisiera saber porqué esta relación cumple con la propiedad antisimétrica.

R= {(1;1),(1;2),(2;3),(1;3),(4;4)}

La definición de la propiedad es: (x;y) e R ^ (y;x) e R --> x=y

Acá tambien hay otra definición: MR ^ MRT =< I

MR: Matriz relación
MRT: Matriz transpuesta
I: Matriz identidad
-----------------------

Porque es antisimétrica si (1;2) pertenece a la relación pero (2;1) no confused
En el caso de (1;1) cumpliría perfectamente con la propiedad.


En el caso de la segunda definición encontré un ejemplo pero no entiendo como se opera con el menor o igual de la identidad.
No sé si me entienden.

Espero que me puedan ayudar
Saludos
15-05-2015 19:11
Visita su sitio web Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
rob. Sin conexión
Presidente del CEIT
Smile!
********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.145
Agradecimientos dados: 126
Agradecimientos: 83 en 66 posts
Registro en: Dec 2010
Mensaje: #2
RE: Consulta sobre relación antisimetrica
Hola,

Yo diría que crees una matriz de relaciones, la interseques con la traspuesta y saques tus conclusiones de si se cumple o no la relación.
Cualquier cosa, segui preguntando.


Saludos.

wake me up when september ends!
(Este mensaje fue modificado por última vez en: 16-05-2015 01:02 por rob..)
16-05-2015 01:02
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Elmats Sin conexión
Presidente del CEIT
Oh my gauss
********

Otra
UBA - Ciencias Exactas y Naturales

Mensajes: 1.307
Agradecimientos dados: 25
Agradecimientos: 110 en 69 posts
Registro en: Mar 2012
Mensaje: #3
RE: Consulta sobre relación antisimetrica
Con esta definición es claro este problema : (x;y) e R ^ (y;x) e R --> x=y. La idea es clara, si la relación es antisimetrica no existe un par tal que (x;y) e R ^ (y;x) e R donde x sea distinto de y. Entonces como se puede ver que no existe ese par, es claro que es una relación antisimetrica.
Observación importante: Que una relación sea antisimetrica, no implica que no sea simetrica. En este caso no pasa, pero es un error común al aprender relaciones.
Observación 2: Graficamente que une relación seá antisimetrica nos dice que el grafo no contiene ciclos, osea no hay "caminos cerrados" que no sean sobre los nodos.

“Our virtues and our failings are inseparable, like force and matter. When they separate, man is no more.”
(Este mensaje fue modificado por última vez en: 16-05-2015 02:35 por Elmats.)
16-05-2015 02:11
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Wasol Sin conexión
Profesor del Modulo A
All for one, one for all
*****

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 334
Agradecimientos dados: 33
Agradecimientos: 70 en 69 posts
Registro en: Nov 2013
Mensaje: #4
RE: Consulta sobre relación antisimetrica
No muy lejos del análisis por definición de relación antisimétrica, pensá en la estructura lógica que contiene.

p^q=>r es falso sí y sólo sí el antecedente (p^q) es verdadero y el consecuente ® es falso.

En el caso de plantear la relación antisimétrica, lo que tenes es:

aRb y bRa => a=b

Lo que te dice es que si los pares ordenados (a,b) y (b,a) pertenecen a la relación, entonces necesariamente a es igual b. Y en caso de ésto no sean iguales, la relación no es antisimétrica.
Dicho de otro modo, si (a,b) pertenece pero (b,a) no pertenece, eso no anula la antisimetría, nos genera un antecedente falso; y en la implicancia lógica, antecedente falso nos devuelve un consecuente verdadero. Te quoteo una respuesta a uno de los chicos que le envié por privado:

Cita:Dado el conjunto A= {2, 3, 4, 5} y la siguiente matriz de relación:

__2_3_4_5
2_1_0_1_1
3_1_1_0_0
4_0_1_1_0
5_0_1_0_1

Nuestros pares ordenados son:

{(2, 2) (3, 3) (4, 4) (5, 5) (2, 4) (2, 5) (3, 2) (4, 3) (5, 3)}

Esta relación es antisimétrica porque para todo par ordenado (a, b) que PERTENECE A LA RELACION, si aRb y bRa entonces a=b.

Así 2R2 Y 2R2 ENTONCES 2=2; lo mismo con 3, 4, y 5.
Con los otros:

(2,4) está en la relación Y (4, 2) NO esta en la relación ENTONCES 2 Es 4

Acá hay que hacer hincapié en lógica. Tengo la proposición de esta manera (p^q)=>r
El único modo de que este razonamiento sea inválido es que la conclusión sea falsa y el antecedente verdadero. El antecedente está sujeto a la conjunción, que sólo es verdadera si p es verdadera y q es verdadera A LA VEZ. Es decir, si p^q resulta verdadero y r resulta falso, el razonamiento es inválido y eso, aplicado a nuestro ejercicio, hace que la relación no sea antisimétrica. Así, como hemos dicho

(2,4) pertenece a R= p; verdadera
(4,2) pertenece a R= q; falsa
2==4 = r; falso
Entonces nos queda (verdadero^falso)=> falso, razonamiento verdadero si te fijas las tablas de verdad.

Si probás con los otros valores de nuestra Relación recién inventada, vas a ver que se sigue con esta lógica.
Ahora vemos qué pasa con la relación (5,4) y (4,5) -que tienen 0 y 0 si te fijas.
(5,4) pertenece a R=p; falsa
(4,5) pertenece a R=q; falsa
4==5 = r; falso
Entonces: (falso^falso)=>falso, razonamiento verdadero también. Podes verificar así que todos los pares ordenados verifican antisimetría.

Ahora retomo la matriz de la relación que te dan en la fotocopia:

__2_3_4_5
2_1_1_1_1
3_1_1_1_1
4_1_1_1_1
5_0_1_1_1

tomo como ejemplo los pares ordenados (5,2) y (2,5)
(2,5) pertenece a R= p; verdadero
(5,2) pertenece a R= q; falso
2==5 =r; falso
(verdadero^falso)=>falso; razonamiento válido (hasta acá podemos decir que es antisimétrica)

(3,2) pertenece a R= p; verdadero
(2,3) pertenece a R= q; verdadero
2==3 =r; falso
(verdadero^verdadero)=>falso. RAZONAMIENTOHIPERMEGARECONTRAFAIL. Nos elimina la antisimetría por completo de la relación.
18-05-2015 20:27
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 2 invitado(s)