Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[Analisis Matematico II] ejercicio de final 26/05/2011
Autor Mensaje
santipisa Sin conexión
Militante
Sin estado :(
***

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 57
Agradecimientos dados: 43
Agradecimientos: 34 en 8 posts
Registro en: Oct 2011
Twitter
Mensaje: #1
[Analisis Matematico II] ejercicio de final 26/05/2011 Finales y 1 más Análisis Matemático II
Sea C la curva de ecuación X=(2t,u(t),u’(t)) con t \[\epsilon \mathbb{R}\] . Sabiendo que C pasa por el punto (0,2,3), halle U(t) tal que la recta tangente a C en cada punto sea paralela a vector del tipo (1,m(t),m(t)) para todo t \[\epsilon \mathbb{R}\]

vi una resolucion que lo hace con ecuaciones diferenciales de segundo grado, pero no entiendo muy bien como llega ahi.
Si alguien me lo puede explicar buenisimo

SANTIPISA-FCO
17-12-2011 20:49
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #2
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
(17-12-2011 20:49)santipisa escribió:  Sea C la curva de ecuación X=(2t,u(t),u’(t)) con t \[\epsilon \mathbb{R}\] . Sabiendo que C pasa por el punto (0,2,3), halle U(t) tal que la recta tangente a C en cada punto sea paralela a vector del tipo (1,m(t),m(t)) para todo t \[\epsilon \mathbb{R}\]

vi una resolucion que lo hace con ecuaciones diferenciales de segundo grado, pero no entiendo muy bien como llega ahi.
Si alguien me lo puede explicar buenisimo

Hola el tema es asi, tenes la curva en su forma parametrica \[X=(2t,u(t),u’(t))\] y el punto \[A.=(0,2,3)\] calculamos el valor del parametro t para saber las condiciones iniciales,

\[X=A\Rightarrow t=0\] obtenemos que \[u(0)=2\wedge u'(0)=3\], derivando X obtenemos que \[X'=(2,u',u'')\], vector director de la recta tangente a la curva, por algebra

sabemos que dos vectores son paralalelos si \[X'=\alpha\vec{v}\quad \vec{v}=(1,m,m)\] de donde aplicando dicha condición obtenemos

\[\\2=\alpha\\u'=2m\\ u''=2m\]

restando \[f_3-f_2\] tenemos que \[u''-u'=0\] ecuacion diferencial que podes resolver mediante reduccion de orden o por coeficientes indeterminados ;) , tenes las concidiones

iniciales, asi que solo es tema de cuentas ahora, thumbup3

saludos

PD: espero no te haya molestado que este mismo post que hiciste en el anterior subforo (parciales y finales) lo haya separado del final en el que estaba

(Este mensaje fue modificado por última vez en: 29-12-2013 00:52 por Saga.)
17-12-2011 23:19
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
santipisa Sin conexión
Militante
Sin estado :(
***

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 57
Agradecimientos dados: 43
Agradecimientos: 34 en 8 posts
Registro en: Oct 2011
Twitter
Mensaje: #3
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
Gracias chabon sos un genio.
No podia entender como llegar a la ecuacion diferencial.
Yo sabia que X' tenia que ser igual a (1,m,m) pero no sabia bien como hacerlo Confused
Muchas gracias.
soy nuevo en estoy no se si hay alguna forma de agradecer o algo asi avisame

SANTIPISA-FCO
(Este mensaje fue modificado por última vez en: 18-12-2011 10:05 por santipisa.)
18-12-2011 10:01
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #4
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
thumbup3 cualquier duda..... andamos por aca ;) , suerte en el final de esta materia

saludos

18-12-2011 10:06
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
matyary Sin conexión
Presidente del CEIT
SORPRENDEME!
********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 1.809
Agradecimientos dados: 68
Agradecimientos: 343 en 83 posts
Registro en: Mar 2011
Mensaje: #5
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
Lindo ejercicio, no lo había visto antes. Es el final de mayo, ahora lo busco en el foro a ver con que me puedo encontrar Jaja

\[\sqrt{-1} \;\; 2^3 \;\; \sum \;\; \pi\]
... and it was good!


Mi web: Von Hexlein
18-12-2011 10:16
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #6
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
(18-12-2011 10:01)santipisa escribió:  soy nuevo en estoy no se si hay alguna forma de agradecer o algo asi avisame

Con responder si la duda que tenias quedo resuelta o no es suficiente para mi, igual gracias por darme un puntito de reputacion blush Feer

saludos y exitos thumbup3

18-12-2011 10:29
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
matyary Sin conexión
Presidente del CEIT
SORPRENDEME!
********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 1.809
Agradecimientos dados: 68
Agradecimientos: 343 en 83 posts
Registro en: Mar 2011
Mensaje: #7
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
Ah, en el E3 del final del 22-9 no había leído "a través de su línea de campo"... por eso lo pensaba por Green, pero nada que ver. Una vez hallada la línea de campo se parametriza y se resuelve por la forma clásica, integral de línea Jaja que boludo, estoy re nervioso.

\[\sqrt{-1} \;\; 2^3 \;\; \sum \;\; \pi\]
... and it was good!


Mi web: Von Hexlein
18-12-2011 11:52
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
proyectomaru Sin conexión
Secretario de la SAE
Ufa
******

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 699
Agradecimientos dados: 241
Agradecimientos: 330 en 86 posts
Registro en: Mar 2010
Mensaje: #8
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
Buenas, aprovecho el topic para preguntar sobre el ejercicio E2 de éste final, que es calcular el volumen de

\[y\geq {x^{2}}, x\geq {y^{2}}, z\leq 48xy\]

Yo hice \[0\leq x\leq 1; {x^{2}} \leq y \leq \sqrt{x}, 0\leq z\leq 48xy\]

Me dio 4, pero la verdad que no entiendo qué estoy integrando...

Una fotito no cuesta nada, ayuda a muchos y nos ahorra a todos de darle plata al CEIT. Colaboremos subiendo finales! thumbup3
13-02-2013 08:49
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #9
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
Supongo que el enunciado te dice en el primer octante ya que no lo aclaras, y ademas si no fuese asi ese limite inferior en z no iria, asi que supongo eso, por otro lado no entiendo bien tu pregunta de "que estas integrando" si tomamos como

\[z=f(x,y)=48xy\]

y aplicamos la definicion de curvas de nivel

\[z=f(x,y)=48xy=0\]

obtenemos un punto, ahora si

\[z=f(x,y)=48xy=k \rightarrow y=\frac{k}{48x}\]

las directrices de la superficie en cuestion corresponden a hiperbolas para todo valor de k, obviamente x distinto de 0, si no me falla en nombrar la superficie, corresponde a un hiperboloide de dos hojas, que se interesecta con dos cilindros parabolicos.... esa era tu duda ???

14-02-2013 19:22
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
proyectomaru Sin conexión
Secretario de la SAE
Ufa
******

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 699
Agradecimientos dados: 241
Agradecimientos: 330 en 86 posts
Registro en: Mar 2010
Mensaje: #10
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
(14-02-2013 19:22)Saga escribió:  Supongo que el enunciado te dice en el primer octante ya que no lo aclaras

sí, tenés razón, no lo puse

(14-02-2013 19:22)Saga escribió:  corresponde a un hiperboloide de dos hojas, que se interesecta con dos cilindros parabolicos.... esa era tu duda ???

no logro ver qué sale de esa intersección, yo trato de hacer siempre los gráficos por más que no se pida pero éste no lo pude realizar

gracias!

Una fotito no cuesta nada, ayuda a muchos y nos ahorra a todos de darle plata al CEIT. Colaboremos subiendo finales! thumbup3
(Este mensaje fue modificado por última vez en: 14-02-2013 19:45 por proyectomaru.)
14-02-2013 19:42
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #11
RE: [Analisis Matematico II] ejercicio de final 26/05/2011
Entiendo, se complica el dibujo ese ya que es medio complicado ..... si nadie sube alguna imagen en un rato vuelvo ;)

14-02-2013 19:58
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 5 invitado(s)