(16-05-2012 16:08)yagui26 escribió: Hola, alguien me podria ayudar con los siguientes temas que se tomaron en el parcial de este cuatrimestre.
1) Sean los puntos P (-1 , 5, 0) y Q (-4, 4, -5), obtener la proyeccion del segmento PQ sobre el plano \[\pi : (4, -1, 2) (x-1, y+2, z-3) = 0\]
Forma la recta que te piden, despues expresala en sus ecuaciones parametricas, para obtener la proyeccion de la recta PQ=r sobre el plano necesitas dos puntos A B como minimo, A lo obtenes
haciendo \[A=r\cap\pi\]
para el otro punto toma el vector director del plano que te dan y forma una recta auxiliar L que pase por el punto del plano (4,-1,2), plantea nuevamente las parametricas de L y obtenes
\[B=L\cap\pi\], cocinado el pollo
Cita:4 Sea \[[B=\left\{x^{2}+ hx-1,x^{2}+(h+1)x,h^{2}x-h\right\}\]
4a) Hallar h para que B sea base de (p2,+,R,*)
4b) Si h=2 obtenga q(x) sabiendo que las coordenadas de q(x) en la base B son (-2 3 4)
a) Aplica la definicion, en resumen, si esos "vectores" son base, entonces son LI, plantea la combinacion lineal al polinomio nulo, del sistema de ecuaciones que te quede, el determinante asociado
debe ser distinto de 0 para que que esos tres "vectores" que te dan sean base
b) es reemplazar el valor de h, y en lugar de igualar al polinomio nulo, igualalo a ese "vector" que te dan.
Recorda que los polinomios de grado dos, son isomorfos con los vectores de \[R^3\]
Cita:5 sean \[W= {(x,y,z): \in R^{3}/ax-3y+z =0}\quad y \quad U = gen \left\{(3,1,a+1) (3a^{2},4,12)\right\}\] subespacios de (\[R^{3}, + , R, *)\]
Halle todos los a que pertenecen a los reales para que \[W\oplus U = R^{3}\]
Sale por el teorema de las dimensiones, \[dim(w) + dim(U) -dim (W \cap U) = dim (U+W) \]
necesariamente para que sea suma directa \[dim (W \cap U) = 0\] o que es lo mismo decir, los generadores de U y W son LI , plantea un sistema de ecuaciones de 3x3 con la normal del
plano y los generadores de U, y fijate para que valores de "a" el determinante asociado es distinto de 0
PD1: si necesitas escribir una formula con latex, no es necesario poner los tags en cada expresion matematica, van solo al inicio de las ecuaciones o funciones y al final
PD2: podes decirnos a que profesor corresponde este parcial ? y cuando lo tomaron ?