Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
Ayuda con ejercicio de vectores.
Autor Mensaje
Alfa Centauri Sin conexión
Campeon del cubo Rubik
Les traigo paz
****

Ing. Aeronáutica
Facultad Regional Haedo

Mensajes: 170
Agradecimientos dados: 61
Agradecimientos: 0 en 0 posts
Registro en: Feb 2013
Mensaje: #1
Ayuda con ejercicio de vectores.
Hola.

Me dan los vectores

A= (a, -4)
B= (-2,6)

AyB son perpendiculares. ¿Cuál es el valor de A?

No entiendo cómo proceder con el ejercicio para hallar el valor de A.

Muchas gracias, espero su respuesta a la brevedad.
12-09-2013 15:21
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
MannuMartinez Sin conexión
Empleado del buffet
Better Call Saul
*

Ing. Química
Facultad Regional Buenos Aires

Mensajes: 12
Agradecimientos dados: 12
Agradecimientos: 3 en 3 posts
Registro en: Apr 2013
Facebook Google+ Twitter
Mensaje: #2
RE: Ayuda con ejercicio de vectores.
Si son perpendiculares A.B=0
(a, -4) . (-2, 6) = 0
-2a - 24 = 0
-2a = 24
a = -12
12-09-2013 15:25
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] MannuMartinez recibio 1 Gracias por este post
Alfa Centauri (12-09-2013)
Alfa Centauri Sin conexión
Campeon del cubo Rubik
Les traigo paz
****

Ing. Aeronáutica
Facultad Regional Haedo

Mensajes: 170
Agradecimientos dados: 61
Agradecimientos: 0 en 0 posts
Registro en: Feb 2013
Mensaje: #3
RE: Ayuda con ejercicio de vectores.
(12-09-2013 15:25)MannuMartinez escribió:  Si son perpendiculares A.B=0
(a, -4) . (-2, 6) = 0
-2a - 24 = 0
-2a = 24
a = -12

Muchas gracias capo thumbup3wave

Tengo otra duda. Tengo que responder V o F y justificar mi respuesta.

Si le informan que A+B=C y │A│+│B│=│C│ → Son colineales y del mismo sentido.

Yo digo que es falso porque el módculo de A más el módulo de B no es igual al módulo de C. Por lo tanto no son colineales ni del mismo sentido.

Tengo otra duda. Tengo que responder V o F y justificar mi respuesta.

Si le informan que A+B=C y │A│+│B│=│C│ → Son colineales y del mismo sentido.

Yo digo que es falso porque el módculo de A más el módulo de B no es igual al módulo de C. Por lo tanto no son colineales ni del mismo sentido.
(Este mensaje fue modificado por última vez en: 12-09-2013 16:04 por Alfa Centauri.)
12-09-2013 15:29
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
MannuMartinez Sin conexión
Empleado del buffet
Better Call Saul
*

Ing. Química
Facultad Regional Buenos Aires

Mensajes: 12
Agradecimientos dados: 12
Agradecimientos: 3 en 3 posts
Registro en: Apr 2013
Facebook Google+ Twitter
Mensaje: #4
RE: Ayuda con ejercicio de vectores.
(12-09-2013 15:29)Alfa Centauri escribió:  
(12-09-2013 15:25)MannuMartinez escribió:  Si son perpendiculares A.B=0
(a, -4) . (-2, 6) = 0
-2a - 24 = 0
-2a = 24
a = -12

Muchas gracias capo thumbup3wave

Tengo otra duda. Tengo que responder V o F y justificar mi respuesta.

Si le informan que A+B=C y │A│+│B│=│C│ → Son colineales y del mismo sentido.

Yo digo que es falso porque el módculo de A más el módulo de B no es igual al módulo de C. Por lo tanto no son colineales ni del mismo sentido.

Tengo otra duda. Tengo que responder V o F y justificar mi respuesta.

Si le informan que A+B=C y │A│+│B│=│C│ → Son colineales y del mismo sentido.

Yo digo que es falso porque el módculo de A más el módulo de B no es igual al módulo de C. Por lo tanto no son colineales ni del mismo sentido.

>>>>
No, en realidad es Verdadero.

Si A y B son colineales, entonces B = \[\alpha \]A
\[Entonces,A= (a1; a2)B= (\alpha .a1 ; \alpha .a2)\]

\[A+B= (a1; a2) + (\alpha .a1 ; \alpha .a2)= (a1 + \alpha .a1 ; a2 + \alpha .a2) = [a1(\alpha + 1) ; a2 (\alpha +1)] = C\]

|A| + |B| = |C|
\[\sqrt{a1^2 + a2^2} + \sqrt{\alpha^2.a1^2 + \alpha^2.a2^2} = \sqrt{a1^2.(\alpha + 1)^2 + a2^2. (\alpha +1)^2}\]
\[\sqrt{a1^2 + a2^2} + \sqrt{\alpha^2 .(a1^2 + a2^2)} = \sqrt{(\alpha + 1)^2 .(a1^2+a2^2)}\]
\[\sqrt{a1^2 + a2^2} + \alpha.\sqrt{a1^2 + a2^2}=(\alpha + 1)\sqrt{a1^2 + a2^2}\]
\[(\alpha+1).\sqrt{a1^2 + a2^2} =(\alpha + 1)\sqrt{a1^2 + a2^2} \]

Y ahi queda demostrado que es Verdadero. Espero que se entienda eso de alfa y a porque por ahi no se nota bien... Saludos-
13-09-2013 01:13
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] MannuMartinez recibio 1 Gracias por este post
Alfa Centauri (14-09-2013)
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)