Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[Autovectores y Autovalores] Duda con 2 ejercicios simples
Autor Mensaje
Gonsha Sin conexión
Presidente del CEIT
Wub Wub Nation
********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 1.491
Agradecimientos dados: 166
Agradecimientos: 696 en 50 posts
Registro en: Mar 2012
Mensaje: #1
[Autovectores y Autovalores] Duda con 2 ejercicios simples Ejercicios Álgebra y Geometría Analítica
Hola gente como andan?

Bueno hay 2 ejercicios de la guia de Rototraslacion (pero que son de matrices y Aval y Avec) que no me salen. Son sencillos (o eso parece) pero no se me ocurre forma de resolverlos.

Estos dicen:

Si \[A=\begin{pmatrix}1 &0 \\ -1&1 \end{pmatrix}\] es una matriz cuadrada y \[p(\lambda )\] es su polinomio caracteristico. Verifique que entonces p(A) = N.

La verdad yo se cual es el polinomio caracteristico que es:

\[p(\lambda )= (1-\lambda )^{2}\]

Intente reemplazar lambda por la matriz A, pero no me da una matriz nula.

El otro ejercicio dice:

Si \[A=\begin{pmatrix} -4 & 1\\ 0&2 \end{pmatrix}\] y \[P=\begin{pmatrix}1 & 1\\ 0&6 \end{pmatrix}\] halle:

a) \[p^{-1}\]
b) Si A y B son matrices semejantes, encuentre \[B^{8}\]


Para este habiendo calculado correctamente \[p^{-1}\] por definicion de matrices semejantes aplique:

B = A = \[p^{-1}\]*D*p

donde D es la matriz diagonalizada de autovalores. Y luego dije:

\[A^{8}=B^{8}=p^{-1}*D^{8}*p\]

Pero no me da el resultado. Como prosigo entonces?

Eso es todo. Saludos y muchas gracias.

[Imagen: tumblr_mram6vK6161rxdmpio1_400.gif]
05-12-2012 13:01
Envíale un email Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 2 invitado(s)