Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[AM2] Ejercicio 6 TP6
Autor Mensaje
Anirus Sin conexión
Super Moderador
Sin estado :)
*********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.163
Agradecimientos dados: 81
Agradecimientos: 232 en 78 posts
Registro en: Nov 2009
Mensaje: #1
[AM2] Ejercicio 6 TP6 Ejercicios Análisis Matemático II
Cita:Dada \[h(x,y) = f(y/x)\] con \[f \in C^1, f' \neq 0 ^(^*^)\], demuestre que la recta tangente a la linea de nivel de h que pasa por\[ \bar{A} = (x_0,y_0)\], está dirigida por \[\vec{A}\]

(*) Al no indicar el punto, significa que la derivada no se anula en todo punto.

Entontré una resolución en http://analisis2.wordpress.com/2010/05/07/tp-6-ej-6/
Logré llegar a
\[\nabla h(x_0, y_0) = \left( \frac{-f'(y_0/x_0) y_0}{x_0^2}, \frac{f ' (y_0/x_0)}{x_0} \right)\]
Y por producto escalar me da que es perpendicular a \[\vec{A}\] como debería ser, sin embargo no me parece que con eso esté demostrado que la recta tangente está dirigida por ese vector, o sea, sé que si es tangente a la línea de nivel es perpendicular al gradiente, pero no toda recta perpendicular al gradiente es tangente...
(Este mensaje fue modificado por última vez en: 31-05-2011 18:11 por Anirus.)
31-05-2011 17:57
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
batty Sin conexión
Profesor del Modulo A

*****

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 211
Agradecimientos dados: 1
Agradecimientos: 11 en 8 posts
Registro en: Mar 2010
Mensaje: #2
RE: [AM2] Ejercicio 6 TP6
(31-05-2011 17:57)Anirus escribió:  Y por producto escalar me da que es perpendicular a \[\vec{A}\] como debería ser, sin embargo no me parece que con eso esté demostrado que la recta tangente está dirigida por ese vector, o sea, sé que si es tangente a la línea de nivel es perpendicular al gradiente, pero no toda recta perpendicular al gradiente es tangente...

pero esta recta perpendicular al gradiente pasa por A=(x0,y0) por eso es tangente, ya que el gradiente también pasa por A=(x0,y0) y la curva de nivel también

PD: Hace casi 1 año que no toco nada de AM2, asi que fijate si no me equivoco =P

[Imagen: firmbatty.png]
31-05-2011 18:43
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Anirus Sin conexión
Super Moderador
Sin estado :)
*********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.163
Agradecimientos dados: 81
Agradecimientos: 232 en 78 posts
Registro en: Nov 2009
Mensaje: #3
RE: [AM2] Ejercicio 6 TP6
O sea, si es una recta que pasa por un punto de la curva y es perpendicular al gradiente en ese punto, es condicion suficiente para que sea tangente a la curva? Sólo una recta tangente cumple eso?
(Este mensaje fue modificado por última vez en: 01-06-2011 15:10 por Anirus.)
01-06-2011 15:09
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
batty Sin conexión
Profesor del Modulo A

*****

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 211
Agradecimientos dados: 1
Agradecimientos: 11 en 8 posts
Registro en: Mar 2010
Mensaje: #4
RE: [AM2] Ejercicio 6 TP6
Si no me estoy equivocando en algo, si.
Fijate, dibuja una curva, marcá un punto y dibuja el gradiente (va a ser normal a la curva) ahora traza perpendiculares al gradiente, la perpendicular que pase por el punto va a ser tangente a la curva

[Imagen: firmbatty.png]
01-06-2011 15:20
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Anirus Sin conexión
Super Moderador
Sin estado :)
*********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.163
Agradecimientos dados: 81
Agradecimientos: 232 en 78 posts
Registro en: Nov 2009
Mensaje: #5
RE: [AM2] Ejercicio 6 TP6
Por ahí estoy imaginando mal :/
Es línea de nivel -> la curva está contenida en un plano
el gradiente es normal a la curva -> el gradiente es normal al plano
Una recta está contenida en el plano -> la recta es normal al gradiente
Y por un punto pasan infinitas rectas...
(Este mensaje fue modificado por última vez en: 01-06-2011 16:56 por Anirus.)
01-06-2011 16:54
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
batty Sin conexión
Profesor del Modulo A

*****

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 211
Agradecimientos dados: 1
Agradecimientos: 11 en 8 posts
Registro en: Mar 2010
Mensaje: #6
RE: [AM2] Ejercicio 6 TP6
(01-06-2011 16:54)Anirus escribió:  Por ahí estoy imaginando mal :/
Es línea de nivel -> la curva está contenida en un plano
el gradiente es normal a la curva -> el gradiente es normal al plano
Una recta está contenida en el plano -> la recta es normal al gradiente
Y por un punto pasan infinitas rectas...

Pero acá no estas siempre en R2 ?
Si no me equivoco sería asi:
Línea de nivel -> la curva está contenida en un plano
el gradiente es normal (perpendicular) a la curva -> el gradiente está contenido en el plano
una recta contenida en el plano -> la recta es perpendicular al gradiente

Esto sería un ejemplo con una curva común:
[Imagen: 0003695239.jpg]
Las flechitas serian los gradientes de la curva en distintos puntos

Acá hay ejemplos con curvas de nivel:
http://portalevlm.usal.es/INDEX_FILES/BA...ADIENT.PDF

Ahora en R3, el gradiente de una superficie es normal un plano tangente a esa superficie en un punto

Espero estar en lo cierto y no haberte hecho confundir =P

[Imagen: firmbatty.png]
(Este mensaje fue modificado por última vez en: 01-06-2011 19:19 por batty.)
01-06-2011 19:18
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Anirus Sin conexión
Super Moderador
Sin estado :)
*********

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 1.163
Agradecimientos dados: 81
Agradecimientos: 232 en 78 posts
Registro en: Nov 2009
Mensaje: #7
RE: [AM2] Ejercicio 6 TP6
Gracias =)
03-06-2011 23:58
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)