Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[AM2] [2do Parcial][RESUELTO] Amed 14/07/12
Autor Mensaje
JulianD Sin conexión
Colaborador
~`☼`~
********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 2.431
Agradecimientos dados: 271
Agradecimientos: 912 en 109 posts
Registro en: Feb 2011
Mensaje: #31
RE: [AM2] [2do Parcial][RESUELTO] Amed 14/07/12
En realidad quize decir lo contrario.. Que el hecho de que sea no "simplemente-conexo" el dominio, significa que se escribe como la union de 2 o mas subconjuntos (los huecos, vienen a cortar el dominio por decirlo demasiado poeticamente).

Osea.. no hay forma de demostrar que no admite f potencial si no es usando un contraejemplo para refutar la condicion de que la circulacion a traves de una curva cerrada debe ser cero?

Se que el dominio no es simplemente conexo, que no es de clase 1 y que las derivadas parciales mixtas son iguales (esto ultimo en este caso no sirve de nada, pero es algo que se).
Puedo demostrar algo con eso ? jaja

[Imagen: 2r27ldw.jpg]
(Este mensaje fue modificado por última vez en: 20-07-2012 15:39 por JulianD.)
20-07-2012 15:37
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #32
RE: [AM2] [2do Parcial][RESUELTO] Amed 14/07/12
(20-07-2012 15:37)JulianD escribió:  En realidad quize decir lo contrario.. Que el hecho de que sea no "simplemente-conexo" el dominio, significa que se escribe como la union de 2 o mas subconjuntos (los huecos, vienen a cortar el dominio por decirlo demasiado poeticamente).

Hablamos de lo mismo solo que con otra nomenclatura jej

Cita:Osea.. no hay forma de demostrar que no admite f potencial si no es usando un contraejemplo para refutar la condicion de que la circulacion a traves de una curva cerrada debe ser cero?

ehh no entendi muy bien, de que contraejemplo hablas?? en dominios no conexos lo unico que hay que hacer es aplicar el colorario del teorema

Cita:Se que el dominio no es simplemente conexo, que no es de clase 1 y que las derivadas parciales mixtas son iguales (esto ultimo en este caso no sirve de nada, pero es algo que se).
Puedo demostrar algo con eso ? jaja

Nop, no alcanza, sino me falla

\[f(x,y)=\left ( \frac{2x}{x^2+y^2},\frac{2y}{x^2+y^2} \right )\]

cumple lo que decis, sin embargo el trabajo sobre la curva es igual a 0 entonces admite funcion potencial

20-07-2012 16:10
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Saga recibio 1 Gracias por este post
JulianD (20-07-2012)
JulianD Sin conexión
Colaborador
~`☼`~
********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 2.431
Agradecimientos dados: 271
Agradecimientos: 912 en 109 posts
Registro en: Feb 2011
Mensaje: #33
RE: [AM2] [2do Parcial][RESUELTO] Amed 14/07/12
Listo, no doy mas vueltas sobre el asunto.
Busco un curva para la cual la circulacion sea != cero.
Y por lo que me dijo fer, se obtiene parametrizando los denominadores.

Muchas gracias saga!

[Imagen: 2r27ldw.jpg]
20-07-2012 16:17
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #34
RE: [AM2] [2do Parcial][RESUELTO] Amed 14/07/12
Dales, solo una cosa, si con la curva que elijas el trabajo es 0, listo el campo es conservativo, no te mates buscando otra que la haga distinto de cero, geometricamente lo que haces es tomar un entorno al rededor del punto y lo delimitas con una circunferencia con centro en ese punto y radio r, en criollo, lo "envolves" al punto con una circunferencia, tomando el radio que mas te guste Feer

20-07-2012 16:39
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Saga recibio 1 Gracias por este post
JulianD (20-07-2012)
JulianD Sin conexión
Colaborador
~`☼`~
********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 2.431
Agradecimientos dados: 271
Agradecimientos: 912 en 109 posts
Registro en: Feb 2011
Mensaje: #35
RE: [AM2] [2do Parcial][RESUELTO] Amed 14/07/12
ahahaha, ahora todo tiene mas sentido.
Grosso!

[Imagen: 2r27ldw.jpg]
20-07-2012 16:51
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Feer Sin conexión
Presidente del CEIT
Ing. Electrónico
**********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 4.672
Agradecimientos dados: 601
Agradecimientos: 2.976 en 451 posts
Registro en: Apr 2010
Mensaje: #36
RE: [AM2] [2do Parcial][RESUELTO] Amed 14/07/12
Colgueee mal con este tópic.. estaba estudiando para física y esto se me paso de largo.
Me di cuenta de que mi explicación de porque esa curva se hacia de tal forma y no decirte el porque causo problemas y disculpa por eso.

La cosa es que el teorema dice que si hay una curva CERRADA donde la circulación sea distinta de 0 (cero) entonces no es campo de gradientes.
Como la curva la armo yo como quiero.. (ya que el ejercicio solo me da el campo de gradientes) lo mas fácil es buscar una circunferencia o un cilindro si es en el espacio..

Una vez encontrado el método se torna muy mecánica la cosa pero claramente tiene un porque de fondo..
Lo que yo hice como primer ejemplo antes de volcarme en esos ejercicios desplazados fue empezar con un denominador de la siguiente forma: X^2+y^2

Lo que hice fue pensar: "tengo que armar una curva cerrada, si yo realizo un producto escalar entre dos cosas las cuales sean positivas o negativas ambas y no tenga términos cero entonces voy a obtener una circulación distinta de 0"
Entonces lo primero que pense fue en decir... como anulo esos denominadores? (como los hago 1) entonces pensé en la identidad trigonométrica senx^2+cosx^2=1 claramente así consigo el denominador = 1... y el numerador me queda en función de cosenos y senos viste..
Ya ahí me aseguro que los denominadores no joden en el producto escalar... Me fije con ese que el numerador al multiplicar escalarmente daba distinto a 0 (acá probas a prueba y error, pero vi que siempre cumple en los ejercicios.. ya que vienen preparado para esto claramente) y ya con eso deje todo demostrado.

Fijate que algunos te pueden decir: demuestre que es conexo coinciden las derivadas parciales pero no es campo conservativo...
otra posibilidad es: no es conexo, coinciden las parciales y demostrar que no es campo gradiente TOOODO eso lo demostras con el mismo teorema.

Suerte loco, nos vemos el miércoles que la rompemos.

[Imagen: digitalizartransparent.png]
20-07-2012 17:07
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
[-] Feer recibio 1 Gracias por este post
JulianD (20-07-2012)
JulianD Sin conexión
Colaborador
~`☼`~
********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 2.431
Agradecimientos dados: 271
Agradecimientos: 912 en 109 posts
Registro en: Feb 2011
Mensaje: #37
RE: [AM2] [2do Parcial][RESUELTO] Amed 14/07/12
Piola Feer, mas claro imposible!
Voy a ver si encuentro mas ejercicios de estos en el toco ese de parciales de amed..
Ya tengo que empezar con el primero jaja

Graciass!

[Imagen: 2r27ldw.jpg]
20-07-2012 17:21
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Feer Sin conexión
Presidente del CEIT
Ing. Electrónico
**********

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 4.672
Agradecimientos dados: 601
Agradecimientos: 2.976 en 451 posts
Registro en: Apr 2010
Mensaje: #38
RE: [AM2] [2do Parcial][RESUELTO] Amed 14/07/12
Dale, fijate que tenemos 2 en la carpeta y acá hay 2 mas en ese tomo de parciales ;)
Igual los repite!!
Peeero no hay mas que eso=D

[Imagen: digitalizartransparent.png]
20-07-2012 17:26
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 5 invitado(s)