Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 0 votos - 0 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[Algebra] Consulta ejercicios[Complejos, Subespacios, Superficies]
Autor Mensaje
alaain Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 11
Agradecimientos dados: 0
Agradecimientos: 1 en 1 posts
Registro en: Jan 2011
Facebook
Mensaje: #1
[Algebra] Consulta ejercicios[Complejos, Subespacios, Superficies] Ejercicios Álgebra y Geometría Analítica
Hola gente, tengo estos 3 ejercicios qe no los entiendo, si alguno me hace la gamba y me ayuda lo agradecere !! Saludoos =)


1.Determine el conjunto de puntos del plano complejo que satisface la ecuacion:
\[\left | z-2i \right |^{2} + Re(z)= Re(z^{2}) +2[Im(z)]^{2}\]


2. Sea \[S= gen \left \{ \left ( 1,1,0,1 \right ) ,\left ( \right0,1,1,2),\left ( -1,0,1,1 \right )\right \}\]
Defina si esposible una transformacion lineal\[T: \mathbb{R}^{4}\rightarrow \mathbb{R}^{4} \] que verifique simultaneamente S es autoespacio asociado al autovalor -1 y dim Nu(T)= 2.


3. Dada en \[ \mathbb{R}^{3}\] la ecuacion: \[-y^{2} + Mz^{2} = 1\].

a) Halle \[M\varepsilon \mathbb{R}\] para que la interseccion de dicha superficie con el plano \[y = \sqrt[]{3}\] sea un par de rectas tal que la distancia entre ellas sea 8.

b) Para \[M= \frac{1}{4}\] encuentre las trazas de la superficie con los planos coordenados e identifique dicha superficie. Grafique.
(Este mensaje fue modificado por última vez en: 12-07-2012 17:48 por Saga.)
10-07-2012 20:33
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #2
RE: [Algebra] Consulta ejercicios
1) no vi complejos
2) lo pienso
3) la intersección con el plano y la superficie nos da como resultado

\[\\|z|=\dfrac{2}{\sqrt{M}}\]

de donde las rectas son

\[r=\left ( x,\sqrt{3},\pm\dfrac{2}{\sqrt{M}} \right )\]

Applicando la formula de distancia

\[d(L.r)=\dfrac{|P_0P_1\times dL|}{|dL|}=\dfrac{|\left(0,0,\dfrac{4}{\sqrt{M}}\right)\times (1,0,0)|}{|1|}=8\]

haciendo las cuentas \[M=\dfrac{1}{4}\]

el otro cuando pueda te contesto, ;)

(Este mensaje fue modificado por última vez en: 10-07-2012 22:26 por Saga.)
10-07-2012 22:22
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
pablo.m Sin conexión
Campeon del cubo Rubik
Sin estado :(
****

Ing. Electrónica
Facultad Regional Buenos Aires

Mensajes: 141
Agradecimientos dados: 13
Agradecimientos: 47 en 23 posts
Registro en: Apr 2011
Mensaje: #3
RE: [Algebra] Consulta ejercicios
Resuelvo el primero.

Como z es complejo se puede escribir: \[z=x+iy\]

Entonces \[Re(z)=x\] y \[Im(z)=y\].

Además \[z^2=(x+iy)^2=x^2+2ixy+(iy)^2=x^2-y^2+2ixy\]

Si tomamos la parte real de ese resultado: \[Re(z^2)=x^2-y^2\]

Por otra parte \[2[Im(z)]^2=2[Im(x+iy)]^2=2y^2\]

Trabajando con el módulo de z-2i:

\[\left | z-2i \right |^2=\left | x+iy-2i \right |^2=\left | x+i(y-2) \right |^2=x^2+(y-2)^2\]

Reemplazando todos estos resultados en la ecuación que te dieron en el problema:

\[x^2+(y-2)^2+x=x^2-y^2+2y^2=x^2+y^2\]

Desarrollando y-2 al cuadrado y operando con la ecuación se llega a:

\[x^2+y^2-4y+4+x-x^2-y^2=0\]

\[-4y+4+x=0\]

\[y=\frac{x}{4}+1\]

Espero que no haberme equivocado en alguna boludez jaja.

Saludos.
(Este mensaje fue modificado por última vez en: 10-07-2012 23:02 por pablo.m.)
10-07-2012 22:59
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
alaain Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 11
Agradecimientos dados: 0
Agradecimientos: 1 en 1 posts
Registro en: Jan 2011
Facebook
Mensaje: #4
RE: [Algebra] Consulta ejercicios
(10-07-2012 22:22)Saga escribió:  1) no vi complejos
2) lo pienso
3) la intersección con el plano y la superficie nos da como resultado

\[\\|z|=\dfrac{2}{\sqrt{M}}\]

de donde las rectas son

\[r=\left ( x,\sqrt{3},\pm\dfrac{2}{\sqrt{M}} \right )\]

Applicando la formula de distancia

\[d(L.r)=\dfrac{|P_0P_1\times dL|}{|dL|}=\dfrac{|\left(0,0,\dfrac{4}{\sqrt{M}}\right)\times (1,0,0)|}{|1|}=8\]

haciendo las cuentas \[M=\dfrac{1}{4}\]

el otro cuando pueda te contesto, ;)


buenisimo! muchas gracias.. ahora una pregunta mas, me podrias explicar de donde sacaste esas dos rectas en la formula de distancia'? me perdi un poco y me esta costando algo este tema jaja, saludos!
12-07-2012 00:21
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #5
RE: [Algebra] Consulta ejercicios
(12-07-2012 00:21)alaain escribió:  buenisimo! muchas gracias.. ahora una pregunta mas, me podrias explicar de donde sacaste esas dos rectas en la formula de distancia'? me perdi un poco y me esta costando algo este tema jaja, saludos!

No hay problema thumbup3, fijate que una vez planteando la intersección me queda definidas unas recta, la cual YO, la exprese en forma vectorial, por ahi te perdiste de la forma en que la defini,

que viendolo bien me pa que hice un abuso en la notacion Confused..

\[r=\left ( x,\sqrt{3},\pm \dfrac{2}{\sqrt{M}} \right )\]

fijjate que esas rectas las puedo expresar con una notacion que te resulte mas conocida

\[r_1=\left (0,\sqrt{3},\dfrac{2}{\sqrt{M}} \right )+x(1,0,0)\]

\[r_2=\left (0,\sqrt{3},-\dfrac{2}{\sqrt{M}} \right )+ \beta(1,0,0)\]

lo podes ver ahora ??

(Este mensaje fue modificado por última vez en: 12-07-2012 00:50 por Saga.)
12-07-2012 00:42
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
alaain Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 11
Agradecimientos dados: 0
Agradecimientos: 1 en 1 posts
Registro en: Jan 2011
Facebook
Mensaje: #6
RE: [Algebra] Consulta ejercicios
sii ahora si..

pero ese vector (1,0,0) ..como lo sacaste?
(Este mensaje fue modificado por última vez en: 12-07-2012 13:28 por alaain.)
12-07-2012 13:26
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Saga Sin conexión
Colaborador
out of order
********

Ing. Industrial
Facultad Regional Buenos Aires

Mensajes: 3.768
Agradecimientos dados: 176
Agradecimientos: 1.744 en 931 posts
Registro en: Sep 2009
Mensaje: #7
RE: [Algebra] Consulta ejercicios[Complejos, Subespacios, Superficies]
mmmmm te hago una pregunta si yo te doy esta ecuación

\[r=(1-2x,5-x,-x)\]

como veras es una recta escrita en forma de vector, y si te pregunto cual es el vector director de esa recta.... lo podes identificar??

2)

Una base de S es \[B_S=\left\{\left(1,1,0,1\right) ,\left(\right0,1,1,2)\right \}\]

Por las condiciones del enunciado se tiene que cumplir \[T(\vec{v})=-\vec{v}\] para todo vector en S, como nos piden que definamos una TL para este espacio, extendemos la base de S tomando por comodidad en cuentas 2 vectores de la base canonica, a los cuales les aplicamos \[T(\vec{v})=\vec 0\], con lo cual tenes ya definida la matriz de la transformación en la base S

\[B_S=\left\{\left(1,1,0,1\right) ,\left(\right0,1,1,2),(0,1,0,0),(0,0,0,1)\right \}\]

Yo tome esas que agregue ahi, pero podes tomar cualquier vector de \[R^4\] siempre y cuando sean LI con los anteriores ^^


Te edite el título por uno mas descriptivo sobre el contenido, a futuro si podes porfa un th por ejercicio, y no todo junto en uno solo Feer thumbup3

(Este mensaje fue modificado por última vez en: 12-07-2012 18:07 por Saga.)
12-07-2012 18:00
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
alaain Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. en Sistemas
Facultad Regional Buenos Aires

Mensajes: 11
Agradecimientos dados: 0
Agradecimientos: 1 en 1 posts
Registro en: Jan 2011
Facebook
Mensaje: #8
RE: [Algebra] Consulta ejercicios[Complejos, Subespacios, Superficies]
despues que postie segui leyendo y entendi bien! gracias por la ayuda a alos dos ! thumbup3

voy a ver si me la saco de encima mañana jaja, saludos!
12-07-2012 20:26
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)