Seguimos buscando a Arshak. Ayudanos compartiendo!
Encuesta no oficial de docentes
Resultados de la encuesta no oficial de docentes
Probaste el SIGA Helper?

Donar $100 Donar $200 Donar $500 Donar mensualmente


Enviar respuesta 
 
Calificación:
  • 1 votos - 5 Media
  • 1
  • 2
  • 3
  • 4
  • 5
Buscar en el tema
[Álgebra y GA][Rototraslación][Final 19-02-09]
Autor Mensaje
myradio Sin conexión
Empleado del buffet
Sin estado :(
*

Ing. Civil
Facultad Regional Buenos Aires

Mensajes: 4
Agradecimientos dados: 0
Agradecimientos: 0 en 0 posts
Registro en: Dec 2009
Mensaje: #1
[Álgebra y GA][Rototraslación][Final 19-02-09] Finales Álgebra y Geometría Analítica
el parcial esta acá: ciencias-basicas-f48/finales-recientes-t1886.html

:) acabo de postear el otro, veamos con este:
el de la cónica rotada:

identificar la curva:
\[\frac{x}{y}=1\]


cuando lo escribo matricialmente tengo

\[\left(\begin{array}{cc}x&y\end{array}\right) \ \left(\begin{array}{cc}0&1/2\\1/2&0\end{array}\right) \ \left(\begin{array}{c}x\\y\end{array}\right)\ = 1\]

\[\Rightarrow\]la ecuación característica me queda \[\ \lambda^2 -1/4 = 0\], que es lo mismo que \[\ ( \lambda +1/2 )( \lambda -1/2 )= 0\]
\[\Rightarrow \ \lambda_{1}=-1/2 \ y \ \lambda_{2}=1/2\]

ahora busco los espacios propios
\[\ \lambda_{1}=-1/2\]
\[\ \left(\begin{array}{cc}-1/2&1/2\\1/2&-1/2\end{array}\right) \ \left(\begin{array}{c}x\\y\end{array}\right)\ = \left(\begin{array}{c}0\\0\end{array}\right)\]

\[\Rightarrow x=y\]
\[\Rightarrow autovector = (1,1)\] lo normalizo y me queda \[( \sqrt{1/2} , \sqrt{1/2} )\]


\[\ \lambda_{2}=1/2\]
\[\ \left(\begin{array}{cc}1/2&1/2\\1/2&1/2\end{array}\right) \ \left(\begin{array}{c}x\\y\end{array}\right)\ = \left(\begin{array}{c}0\\0\end{array}\right)\]

\[\Rightarrow x=-y\]
\[\Rightarrow autovector = (1,-1)\] lo normalizo y me queda \[( \sqrt{1/2} , - \sqrt{1/2} )\]


\[\Rightarrow\]la matríz que diagonaliza a la de la ecuación inicial es:
\[\left(\begin{array}{cc}\sqrt{1/2}&\sqrt{1/2}\\-\sqrt{1/2}&\sqrt{1/2}\end{array}\right)\]

entonces hago


\[\left(\begin{array}{cc}\sqrt{1/2}&\sqrt{1/2}\\-\sqrt{1/2}&\sqrt{1/2}\end{array}\right) \ \left(\begin{array}{cc}0&1/2\\1/2&0\end{array}\right) \ \left(\begin{array}{cc}\sqrt{1/2}&-\sqrt{1/2}\\\sqrt{1/2}&\sqrt{1/2}\end{array}\right)\]

\[= \ \left(\begin{array}{cc}1/2&0\\0&-1/2\end{array}\right)\]

y reescribo la cónica así:

\[\left(\begin{array}{cc}x&y\end{array}\right) \ \left(\begin{array}{cc}1/2&0\\0&-1/2\end{array}\right) \ \left(\begin{array}{c}x\\y\end{array}\right)\ = 1\]

y me queda= \[\frac{x^2}{2} - \frac{y^2}{2} = 1\]

que creo que es una hipérbola.
este creo que esta bien.
alguien sabe como calcular la excentricidad?
10-12-2009 01:33
Encuentra todos sus mensajes Agregar agradecimiento Cita este mensaje en tu respuesta
Buscar en el tema
Enviar respuesta 




Usuario(s) navegando en este tema: 1 invitado(s)