Análisis Matemático II

Universidad Nacional de Salta. Facultad de Ciencias Exactas. Superficies - Teoremas Integrales

17 de junio de 2009

1. Superficies

1.1. Parametrización de una superficie

Al igual que en el caso de las curvas, distinguiremos dos conceptos:

- 1. la parametrización de la superficie (que será la transformación o función) y
- 2. la superficie que será la imagen de ella (esto es el objeto geométrico llamado superficie)

Una parametrizaci'on de una superficie S es una funci\'on

$$\overline{\phi}: D \subset \mathbf{R}^2 \to \mathbf{R}^3 \text{ tal que } \overline{\phi}(u,v) = (x(u,v),y(u,v),z(u,v))$$

y llamamos superficie S a la imágen de esa función, es decir

$$S = \operatorname{Im} \overline{\phi} = \{ \overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{\phi}(u, v), (u, v) \in D \}$$

Sea $f: D \subset \mathbf{R}^2 \to \mathbf{R}$ tal que z = f(x, y). Podemos definir la siguiente parametrización

$$\begin{array}{cccc} \overline{\phi}: & D \subset \mathbf{R}^2 & \to & \mathbf{R}^3 \\ & (u,v) & \mapsto & (u,v,f(u,v)) \end{array}$$

entonces

$$S = \operatorname{Im} \overline{\phi} = \{ \overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{\phi}(u, v) \quad (u, v) \in D \} = \{ \overline{x} \in \mathbf{R}^3 \mid \overline{x} = (u, v, f(u, v)) \quad (u, v) \in D \} = \operatorname{graf} f(u, v) = f(u, v)$$

Si $S = \{\overline{x} \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 = 1\}$ (esto es la esfera hueca de radio 1) podemos, usando coordenadas esféricas encontrar una parametrización de la misma. Esto es

$$x(\theta, \varphi) = \cos \theta \sec \varphi$$
$$y(\theta, \varphi) = \sec \theta \sec \varphi$$
$$z(\theta, \varphi) = \cos \varphi$$

$$\overline{\phi}: D \subset \mathbf{R}^2 \to \mathbf{R}^3 \text{ tal que } \overline{\phi}(\theta, \varphi) = (x(\theta, \varphi), y(\theta, \varphi), z(\theta, \varphi)) = (\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)$$

donde $D = \{(\theta, \varphi) \in \mathbf{R}^2 \mid 0 \le \theta < 2\pi \ 0 \le \varphi \le \pi\}$ entonces

$$S = \{\overline{x} \in \mathbf{R}^3 \mid x^2 + y^2 + z^2 = 1\} = \{\overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{\phi}\left(\theta, \varphi\right) \quad (\theta, \varphi) \in D\}$$

1.1.1. Cómo pasar de la ecuación paramétrica a la explícita

Ecuación paramétrica: $\overline{x}(u,v) = (x(u,v),y(u,v),z(u,v))$ si $J\left(\frac{x,y}{u,v}\right) \neq 0$, entonces $\begin{cases} u=u(x,y) \\ v=v(x,y) \end{cases}$ en consecuencia $z=z\left(u\left(x,y\right),v\left(x,y\right)\right)=z\left(x,y\right)$

Igualando a cero, tenemos la ecuación implícita F(x, y, z) = 0.

1.2. Vector normal a la superficie S dada en forma paramétrica

Sea $S = \{\overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{\phi}(u, v) \quad (u, v) \in D\}$ con $\overline{\phi} : D \subset \mathbf{R}^2 \to \mathbf{R}^3$ diferenciable (esto es $\overline{\phi}$ es una parametrización de S diferenciable).

$$\begin{array}{c} u \\ v = v_0 = cte \\ \sigma \{u_0, v\} \\ \hline \end{array}$$

Al fijar
$$u=u_0$$
, obtenemos la función:
$$\overline{\phi}: [a,b] \subset \mathbf{R} \longrightarrow \mathbf{R}^3$$

$$v \mapsto \overline{\phi}(u_0,v)$$
 la imagen de $\overline{\phi}$ será la curva
$$C = \{\overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{\phi}(u_0,v) \quad v \in [a,b]\} \subset S$$
con vector tangente $\overline{\phi}'(v_0) = \overline{x}_v(u_0,v_0) =$

$$= (x_v(u_0,v_0), y_v(u_0,v_0), z_v(u_0,v_0)) = T_v(u_0,v_0)$$
Al fijar $v=v_0$, se obtiene la función:
$$\overline{\phi}: [c,d] \subset \mathbf{R} \longrightarrow \mathbf{R}^3$$

$$u \mapsto \overline{\phi}(u,v_0)$$
su imagen es una curva:
$$C = \{\overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{\phi}(u,v_0) \quad u \in [c,d]\} \subset S$$
con vector tangente
$$\overline{\phi}'(u_0) = \overline{x}_u(u_0,v_0) =$$

$$= (x_u(u_0,v_0), y_u(u_0,v_0), z_u(u_0,v_0)) = T_u(u_0,v_0)$$

Resulta que si $T_u(u_0, v_0) \times T_v(u_0, v_0) \neq \overline{0}$ entonces el vector $T_u(u_0, v_0) \times T_v(u_0, v_0)$ es un vector normal a la superficie S en el punto $\overline{\phi}(u_0, v_0)$. Además esta condición nos asegura que la superficie S en el punto $\overline{\phi}(u_0, v_0)$ tiene plano tangente (esto es la superficie es "suave" o sea no tiene esquinas).

Un versor normal a S en $\overline{\phi}(u_0, v_0)$ está dado por

$$\overline{n} = \frac{\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)}{||\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)||}$$

Plano tangente a la superficie S dada en forma paramétrica

Sea $S = \{\overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{\phi}(u, v) \quad (u, v) \in D\}$ con $\overline{\phi} : D \subset \mathbf{R}^2 \to \mathbf{R}^3$ differenciable (esto es $\overline{\phi}$ es una parametrización de S diferenciable) y $T_u(u_0, v_0) \times T_v(u_0, v_0) \neq \overline{0}$, la ecuación del plano tangente a S en $\overline{\phi}(u_0, v_0)$ a:

$$(x - x_0, y - y_0, z - z_0) \cdot (\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)) = 0$$

o lo que es equivalente a

$$(\overline{x} - \overline{x}_0) \cdot \overline{n} = 0$$

Ejemplo 1: Para la superficie $\overline{x}(u,v) = (u\cos v, u\sin v, u^2 + v^2)$, hallar la ecuación del plano tangente y su normal unitaria en el punto $(u_0, v_0) = (1, 0)$.

Ejemplo 2: Hallar la ecuación del plano tangente y la normal unitaria en el punto a la superficie dada por $x^3 + 3xy +$ $z^2 = 2$, en el punto $(1, \frac{1}{3}, 0)$.

Ejemplo 3: Sea $S = \{(x, y, z) \in \mathbf{R}^3 \mid z = \sqrt{x^2 + y^2}, (x, y) \in \mathbf{R}^2\}$ que ya conocemos como el cono.

Si
$$\overline{\phi}$$
: $D \subset \mathbf{R}^2$ \mathbf{R}^3 $\overline{u} = \overline{\phi}(u, v) \mapsto (u \cos v, u \sin v, u)$ $\overline{u} = \overline{\phi}(u, v) \mapsto (u \cos v, u \sin v, u)$ $\overline{u} = \overline{\phi}(u, v) \mapsto \overline{u} = \overline{\phi}(u, v)$ $\overline{u} = \overline{\phi}$

D} Esto es $\overline{\phi}$ es una parametrización del cono. Notemos que $\overline{\phi}$ es diferenciable $\forall (u,v) \in D$, en particular lo es en (0,0,0): Además $\overline{x}_n(0,0,0) = (\cos 0, \sin 0,1) = (1,0,1)$ y $\overline{x}_n(0,0,0) = (0,0,0)$ y $\overline{x}_n(0,0,0) \times \overline{x}_n(0,0,0) = (0,0,0)$. Observamos que la superficie tiene una parametrización diferenciable pero pero en (0,0,0) no tiene plano tangente.

1.4. Clasificación de las superficies

Superficie regular o suave 1.4.1.

Decimos que S es una superficie regular o suave si existe una parametrización $\overline{\phi}$ de S diferenciable tal que S= $\{\overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{\phi}(u,v) \quad (u,v) \in D\} \text{ con } \overline{x}_u(u,v) \times \overline{x}_v(u,v) \neq \overline{0} \text{ para todo } (u,v) \in D.$ S es una superficie suave en $(u_0, v_0) \in D$ si $\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0) \neq \overline{0}$.

1.4.2. Superficie regular a torzos

Decimos que S es una superficie regular a trozos si es unión finita de superficies regulares. No toda parametrización de la superficie me dá la información sobre la suavidad de la superficie.

1.4.3. Superficie orientada

Una superficie orientada es una superficie con dos cara, una de ellas exterior (o positiva) y otra interior (o negativa). Esta definición supone que nuestra superficie tiene dos caras. Hay superficies que solo tienen una cara, por ejemplo la cinta de Moebius. En cada punto de M hay dos normales unitarias \overline{n}_1 y \overline{n}_2 donde $\overline{n}_1 = -\overline{n}_2$. Sin embargo \overline{n}_1 y \overline{n}_2 determina una única cara de M, pues si partimos de un punto P sobre M y deslizamos \overline{n}_1 sobre una curva cerrada $C \subset M$, cuando \overline{n}_1 llegue de nuevo a P coincide con \overline{n}_2 , mostrando que ambas \overline{n}_1 y \overline{n}_2 apuntan alejándose de la misma cara y en consecuencia tienen una sola cara.

Sea $S = \{\overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{\phi}(u,v) \quad (u,v) \in D\}$ una superficie suave, esto es $\overline{x}_u(u,v) \times \overline{x}_v(u,v) \neq \overline{0}$ para todo $(u,v) \in D$. Si llamamos $\overline{n}(\overline{\phi}(u_0,v_0))$ al versor normal a S en $\overline{\phi}(u_0,v_0)$ que apunta hacia la cara positiva de S (la que tiene normal pòsitiva), entonces

$$\frac{\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)}{||\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)||} = \pm \overline{n}(\overline{\phi}(u_0, v_0))$$

Se dice que la parametrización $\overline{\phi}$ preserva la orientación si

$$\frac{\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)}{||\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)||} = \overline{n}(\overline{\phi}(u_0, v_0))$$

esto es $\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)$ apunta hacia la cara positiva.

Se dice que la parametrización $\overline{\phi}$ invierte la orientación si

$$\frac{\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)}{||\overline{x}_u(u_0, v_0) \times \overline{x}_v(u_0, v_0)||} = -\overline{n}(\overline{\phi}(u_0, v_0))$$

Podemos dar una orientación a la esfera unitaria $S=\{(x,y,z)\in \mathbf{R}^3|x^2+y^2+z^2=1\}$, eligiendo como cara positiva la exterior. Esto es como versor normal para $(x,y,z)\in S$ es $\overline{n}(x,y,z)=(x,y,z)$. Dada la siguiente parametrización de S

$$\overline{\phi}: D \subset \mathbf{R}^2 \to \mathbf{R}^3 \text{ tal que } \overline{\phi}(\theta, \varphi) = (\cos \theta \text{ sen } \varphi, \sin \theta \text{ sen } \varphi, \cos \varphi)$$

verificar que esta parametrización de la esfera invierte la orientación

2. Integrales de superficies

Hemos visto la integral tanto de una función escalar como de una vectorial a lo largo de una curva regular a trozos. Ahora pretendemos definir la integral de funciones escalares o vectoriales sobre superficies suaves.

2.1. Area de una superficie dada paramétricamente

Sea Σ una superficie alabeada regular, es decir:

$$\Sigma = \{ (x, y, z) | \overline{x} = \overline{x}(u, v), (u, v) \in D_{uv} \}$$

con

$$\overline{x} \in C^1$$
 y $\frac{\partial \overline{x}}{\partial u} \times \frac{\partial \overline{x}}{\partial v} \neq \overline{0}$ $\forall (u, v) \in D$ donde D es de frontera, ∂D , regular a trozos

Si \overline{x} es inyectiva en cada punto tenemos elegido un sentido para la normal al igual que cuando parametrizamos una curva C elegimos el sentido del recorrido. Esto es, supondremos que Σ es orientable. Para calcular el diferencial de área de una superficie alabeada, aproximaremos a ésta por un paralelogramo contenido en el plano tangente. Sea $\sum = \{\overline{x}(u,v) \in R^3 : (u,v) \in D\}$, como ya vimos en integrales dobles, sin pérdida de generalidad podemos tomar a D como un rectángulo, es decir que $D = [a,b] \times [c,d]$. Realizando una partición \mathcal{P} , en el plano uv, de este rectángulo, podemos obtener nm rectángulos de la forma $R_{ij} = [u_i,u_{i+1}] \times [v_j,v_{j+1}]$ para $0 \le i \le n, 0 \le j \le m$, con $u_o = a$, $u_n = b, v_o = c, v_n = d$. Esta partición en el plano uv, origina una partición en la superficie \sum , como ya mencionamos nuestro propósito es aproximar un diferencial de área $(\Delta \Sigma_{ij})$, por el área de un "pedacito" de plano tangente (ΔA_{ij}) , con vértices $\overline{x}(u_i,v_j), \overline{x}(u_{i+1},v_j), \overline{x}(u_{i+1},v_{j+1})$ y $\overline{x}(u_i,v_{j+1})$. Notemos que

$$\overline{x}(u_{i+1}, v_i) - \overline{x}(u_i, v_i) \approx \overline{x}_u(u_i, v_i) (u_{i+1} - u_i) = \overline{x}_u(u_i, v_i) \Delta u_i$$

$$\overline{x}(u_i, v_{i+1}) - \overline{x}(u_i, v_i) \approx \overline{x}_u(u_i, v_i) (v_{i+1} - v_i) = \overline{x}_u(u_i, v_i) \Delta v_i$$

Como $[\overline{x}(u_{i+1}, v_j) - \overline{x}(u_i, v_j)]$ y $[\overline{x}(u_i, v_{j+1}) - \overline{x}(u_i, v_j)]$, forman los lados del paralelogramo contenido en el plano tangente entonces

medida de
$$\Delta A_{ij} = \mu(\Delta A_{ij}) = \|(\overline{x}(u_{i+1}, v_j) - \overline{x}(u_i, v_j)) \times (\overline{x}(u_i, v_{j+1}) - \overline{x}(u_i, v_j))\| \approx$$

$$\approx \|\overline{x}_u(u_i, v_j)\Delta u_i \times \overline{x}_v(u_i, v_j)\Delta v_i\| = \|\overline{x}_u(u_i, v_j) \times \overline{x}_u(u_i, v_j)\|\Delta u_i\Delta v_i\|$$

Entonces:

$$\sum_{i=0}^{n-1} \sum_{i=0}^{m-1} \mu\left(\Delta A_{ij}\right) = \sum_{i=0}^{n-1} \sum_{i=0}^{m-1} \|\overline{x}_u(u_i, v_j) \times \overline{x}_v(u_i, v_j)\| \Delta u_i \Delta v_i$$

Con lo cual

$$\mu(\Sigma) = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \mu(\Delta \Sigma_{ij}) = \lim_{\|\mathcal{P}\| \to 0} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \mu(\Delta A_{ij}) =$$

$$= \lim_{\|\mathcal{P}\| \to 0} \sum_{i=0}^{n-1} \sum_{j=0}^{m-1} \|\overline{x}_u(u_i, v_j) \times \overline{x}_v(u_i, v_j) \| \Delta u_i \Delta v_i = \iint_D \|\overline{x}_u \times \overline{x}_v\| \, \mathrm{dudv}$$

y tendremos que el área de una superficie dada paramétricamente es:

$$\mu\left(\Sigma\right) = \iint_{D} \|\overline{x}_{u} \times \overline{x}_{v}\| \, \mathrm{dudv}$$

y denotando $\overline{d\Sigma = \|\overline{x}_u \times \overline{x}_v\| \, \text{dudv}}$

$$\mu\left(\Sigma\right) = \iint_{\Sigma} d\Sigma = \iint_{D} \|\overline{x}_{u} \times \overline{x}_{v}\| \, \mathrm{dudv}$$

Recordemos que si la superficie está parametrizada $\overline{x}(u,v)=(x(u,v),y(u,v),z(u,v))$, entonces

$$\overline{x}_u \times \overline{x}_v = \left(J\left(\frac{y\,z}{u\,v}\right), -J\left(\frac{x\,z}{u\,v}\right), J\left(\frac{x\,y}{u\,v}\right)\right)$$

Si Σ es tal que uno de estos jacobianos es distinto de cero para todo par (u, v), entonces Σ es proyectable. Siendo $\Sigma = \operatorname{Graf} f \operatorname{con} f : D \subset \mathbf{R}^2 \to \mathbf{R}$

- 1. Si la superficie es proyectable en el plano xy: entonces $\Sigma = \{(x, y, z) | z = f(x, y), (x, y) \in \Sigma_{xy}\}$
- 2. Si la superficie es proyectable en el plano xz: entonces $\Sigma = \{(x, y, z) | y = f(x, z), (x, z) \in \Sigma_{xz}\}$
- 3. Si la superficie es proyectable en el plano yz: entonces $\Sigma = \{(x, y, z) \mid x = f(y, z), (y, z) \in \Sigma_{yz}\}$

2.2. Area de una superficie dada en forma explícita

Supongamos que Σ , dada por z = f(x, y), es proyectable sobre el plano xy:

$$\Sigma = \{ (x, y, z) | z = f(x, y), (x, y) \in D \}$$

podemos parametrizarla haciendo $x=u,\ y=v,\ z=f(u,v),$ es decir $\overline{\phi}\left(u,v\right)=\left(u,v,f\left(u,v\right)\right).$ Hacemos:

$$\overline{x_u} \times \overline{x_v} = \begin{vmatrix} i & j & k \\ 1 & 0 & \frac{\partial f}{\partial x} \\ 0 & 1 & \frac{\partial f}{\partial y} \end{vmatrix} = \left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1 \right) \Rightarrow ||\overline{x_u} \times \overline{x_v}|| = \sqrt{1 + \left(\frac{\partial f}{\partial x} \right)^2 + \left(\frac{\partial f}{\partial y} \right)^2}$$

y el área de una superficie proyectable en el plano xy se calcula como

$$A(\Sigma) = \iint_{\Sigma} d\Sigma = \iint_{D} \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^{2} + \left(\frac{\partial f}{\partial y}\right)^{2}} \, dx \, dy$$

Observemos que en este caso el vector normal está dado por:

$$\overline{n} = \frac{\overline{x_u} \times \overline{x_v}}{||\overline{x_u} \times \overline{x_v}||} = \frac{\left(-\frac{\partial f}{\partial x}, -\frac{\partial f}{\partial y}, 1\right)}{\sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}}$$

2.3. Area de una superficie dada en forma implícita

Supongamos que la superficie Σ está dada por la forma implícita $\phi(x,y,z)=0$

$$\Sigma = \{ (x, y, z) | \phi(x, y, z) = 0 \quad (x, y, z) \in B \} \quad \text{con} \quad \Sigma \quad \text{regular}$$

Si suponemos $\frac{\partial \phi}{\partial z} \neq 0$, entonces Σ es proyectable en el plano xy y existe una función $f: D \subset \mathbf{R}^2 \to \mathbf{R}$ tal que $\phi(x,y,f(x,y)) = 0, \ \forall (x,y) \in D \quad y \quad f \in C^1$

$$\frac{\partial f}{\partial x} = -\frac{\frac{\partial \phi}{\partial x}}{\frac{\partial \phi}{\partial z}}, \qquad y \qquad \frac{\partial f}{\partial y} = -\frac{\frac{\partial \phi}{\partial y}}{\frac{\partial \phi}{\partial z}}$$

$$\sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} = \sqrt{1 + \frac{(\phi_x)^2}{(\phi_z)^2} + \frac{(\phi_y)^2}{(\phi_z)^2}} = \frac{\sqrt{\phi_x^2 + \phi_y^2 + \phi_z^2}}{|\phi_z|}$$

$$A(\Sigma) = \iint_{\Sigma} d\Sigma = \int_{D} \frac{\sqrt{\phi_x^2 + \phi_y^2 + \phi_z^2}}{|\phi_z|} dx dy \qquad y \quad \overline{n} = \frac{\nabla \phi}{||\nabla \phi||}$$

Se cumple que $\overline{n} = (n_1, n_2, n_3) = (\cos \alpha, \cos \beta, \cos \gamma)$, pues:

$$n_1 = \overline{n} \cdot \overline{i} = ||n|| ||\overline{i}|| \cos \alpha = \cos \alpha$$

$$n_2 = \overline{n} \cdot \overline{j} = ||n|| ||\overline{j}|| \cos \beta = \cos \beta$$

$$n_3 = \overline{n} \cdot \overline{k} = ||n|| ||\overline{k}|| \cos \gamma = \cos \gamma$$

siendo estos los cosenos directores. Es decir que si Σ es proyectable en el plano xy significa que cos $\gamma \neq 0$ esto quiere decir que $\gamma \neq 90^{\circ}$ y en este caso podemos calcular el área en función de los cosenos directores.

2.4. Area de una superficie en función de los cosenos directores

- 1. Si es proyectable sobre el plano xy $A(\Sigma) = \iint_{\Sigma} d\Sigma = \iint_{\Sigma xy} |\sec \gamma| \, dx \, dy$
- 2. Si es proyectable sobre el plano xz $A(\Sigma) = \iint_{\Sigma} d\Sigma = \iint_{\Sigma xz} |\sec \beta| \, dx \, dz$
- 3. Si es proyectable sobre el plano yz $A(\Sigma) = \iint_{\Sigma} d\Sigma = \iint_{\Sigma yz} |\sec \alpha| \, dy \, dz$

Observación: Si $\cos \gamma = \frac{dx\,dy}{d\Sigma} \Longrightarrow d\Sigma = \frac{dx\,dy}{\cos\gamma}$ entonces

$$\cos \gamma = \frac{\frac{\partial \phi}{\partial z}}{||\nabla \phi||} = \frac{\frac{\partial \phi}{\partial z}}{\sqrt{\phi_x^2 + \phi_y^2 + \phi_z^2}}$$

Ejemplo: Calcular la superficie del cilindro $\Sigma = \{(x, y, z) / x^2 + y^2 = a^2, 0 \le z \le 3\}$

$$\overline{n} = \frac{\nabla \phi}{||\nabla \phi||} = \frac{(2x, 2y, 0)}{\sqrt{4x^2 + 4y^2}} = \left(\frac{x}{\sqrt{x^2 + y^2}}, \frac{y}{\sqrt{x^2 + y^2}}, 0\right) = \left(\frac{x}{a}, \frac{y}{a}, 0\right)$$

Entonces $\cos \gamma = 0$ por lo tanto la superficie (la cara lateral del cilindro), no es proyectable en el plano xy. Pero $\cos \beta = \frac{y}{a} \neq 0$, $\forall (x,y,z) \in \Sigma$, por lo que puede proyectarse en el plano xz. La proyección del semicilindro para y > 0 es un rectángulo y es exactamente igual que la proyección del otro semicilindro, entonces:

$$A(\Sigma) = 2 \iint_{R} \frac{dx \, dz}{|\cos \gamma|} = 2 \int_{0}^{3} \int_{-a}^{a} \frac{a}{y} \, dx \, dz$$
$$2 \int_{0}^{3} \int_{-a}^{a} \frac{a}{\sqrt{a^{2} - x^{2}}} \, dx \, dz = 2a \int_{0}^{3} (\arcsin(\frac{x}{a})|_{-a}^{a} \, dz = \int_{0}^{3} 2a(\frac{\pi}{2} + \frac{\pi}{2}) \, dz = 6\pi a$$

Otro modo de resolver el ejercicio es parametrizar la superficie: $x = a \cos u$, $y = a \sin u$, z = v, y nos queda:

$$\Sigma = \{(x, y, z) \in \mathbf{R}^3 \mid \overline{x} = (x = a \cos u, y = a \sin u, z = v), (u, v) \in D\} \text{ con } D = \{(u, v) \in \mathbf{R}^2 \mid 0 \le u \le 2\pi, 0 \le v \le 3\}$$

$$\Sigma = \iint_{\Sigma} d\Sigma = \iint_{D} ||\overline{x_{u}} \times \overline{x_{v}}|| \, dudv$$

$$\overline{x_{u}} \times \overline{x_{v}} = \begin{vmatrix} i & j & k \\ -a \cos u & a \cos v & 0 \\ 0 & 0 & 1 \end{vmatrix} = (a \cos v, a \sin u, 0) \quad y \quad ||\overline{x_{u}} \times \overline{x_{v}}|| = a$$

Reemplazando en la integral doble obtenemos

$$\Sigma = \int_0^3 \int_0^{2\pi} a \, \mathrm{dudv} = 6\pi a$$

3. Integrales de Superficie sobre Funciones Escalares

Sea Σ es una superficie regular, $\Sigma = \{ \overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{x}(u,v), \text{con } (u,v) \in D_{uv} \}$, y una función escalar $f: D \subset \mathbf{R}^3 \to \mathbf{R}$, con $\Sigma \subset D$ y f continua.

$$\int_{\Sigma} f = \iint_{\Sigma} f(x, y, z) d\Sigma = \iint_{Duv} f(\overline{x}(u, v)) ||\overline{x_u} \times \overline{x_v}|| du dv$$

Observamos que esta integral existe pues: $\overline{x} \in C^1$ con lo que \overline{x} es contínua, Im $\overline{x} = \Sigma \subset D$ y puede realizarse la composición: $f \circ \overline{x} : Duv \subset \mathbf{R}^2 \to \mathbf{R}$ que es continua. Además $\overline{x_u}$ y $\overline{x_v}$ son continuas, entonces $\overline{x_u} \times \overline{x_v}$ es continua y $||\overline{x_u} \times \overline{x_v}||$ también. Siendo el integrando una función contínua en el dominio de integración, esa integral existe.

Pueden mencionarse como aplicaciones:

1. Si
$$f(x, y, z) = 1 \Longrightarrow \int_{\Sigma} f = \iint_{\Sigma} 1 d\Sigma = A(\Sigma)$$

2. El valor promedio de f(x, y, z) sobre Σ es:

$$\frac{\iint_{\Sigma} f(x, y, z) d\Sigma}{\int_{\Sigma} d\Sigma} = \frac{\iint_{\Sigma} f(x, y, z) d\Sigma}{A(\Sigma)}$$

- 3. Si f(x, y, z) representa la densidad de masa y Σ una chapa en el punto (x, y, z), entonces la integral anterior representa la masa total de la chapa.
- 4. Si f representa la densidad de masa y m la masa total siendo $\int_{\Sigma} f(x,y,z) d\Sigma = m$, las integrales:

$$x = \frac{1}{m} \iint_{\Sigma} x f(x, y, z) d\Sigma \qquad y = \frac{1}{m} \iint_{\Sigma} y f(x, y, z) d\Sigma \qquad z = \frac{1}{m} \iint_{\Sigma} z f(x, y, z) d\Sigma$$

nos dan las coordenadas (x, y, z) del centro de masa.

5. Sea $\Sigma = \{(x, y, z) \mid z = f(x, y), (x, y) \in Dxy\}$, si usamos la parametrización:

$$x = u, y = v, z = f(u, v) \Longrightarrow ||\overline{x_u} \times \overline{x_v}|| = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \Longrightarrow$$

$$\iint_{\Sigma} \phi(x,y,z) \, d\Sigma = \iint_{Dxy} \phi(x,y,f(x,y)) \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} \, dx \, dy$$

Sea $\Sigma = \{(x, y, z) \mid \overline{x} = (r \cos \theta, r \sin \theta, \theta), (r, \theta) \in D_{r\theta}\}$, tal que $D_{r\theta} = \{(r, \theta) \in \mathbf{R}^2 \mid 0 \le r \le 1, 0 \le \theta \le 2\pi\}$ y sea $f(x, y, z) = \sqrt{x^2 + x^2 + 1}$, tenemos que:

$$\iint_{\Sigma} f(x, y, z) d\Sigma = \int_{0}^{2\pi} \int_{0}^{1} \sqrt{r^2 + 1} \sqrt{r^2 + 1} dr d\theta = \int_{0}^{2\pi} \frac{4}{3} d\theta = \frac{8}{3}\pi$$

4. Integrales de Superficie de Funciones Vectoriales

Sea $\overline{F}: D \subset \mathbf{R}^3 \to \mathbf{R}^3$ un campo contínuo, y sea $\Sigma \subset D$ tal que es una superficie regular, simple y orientable. Entonces:

$$\iint_{\Sigma} \overline{F} \, d\Sigma = \iint_{Duv} \overline{F}(\overline{x}(u,v)) \cdot (\overline{x_u} \times \overline{x_v}) \, du \, dv = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F} \, \overline{n} \, d\Sigma = \iint_{Duv} (\overline{F}(\overline{x}(u,v)) \cdot \overline{n}) \, ||\overline{x_u} \times \overline{x_v}|| \, du \, dv = \iint_{\Sigma} \overline{F}(\overline{x}(u,v)) \, dv$$

Se puede ver que esta integral existe ya que \overline{F} es contínua lo mismo que \overline{x}_u y \overline{x}_v .

Note que el producto $\overline{F}(\overline{x}(u,v)) \cdot \overline{n}$, nos da la componente de \overline{F} en la dirección normal a la superficie atravesada, y será ella la que aporte en la integral.

Sea $F: D \subset \mathbf{R}^3 \to \mathbf{R}^3$ un campo continuo, y sea $\Sigma \subset D$ una superficie regular, simple y orientable de la forma: $\Sigma = \{(x, y, z) \in \mathbf{R}^3 \mid \overline{x} = \overline{x}(u, v), (u, v) \in D_{uv}\}$. Denotaremos

$$\iint_{\overline{D}uv} \overline{F} = \iint_{Duv} \overline{F}(\overline{x}(u,v)) \cdot (\overline{x}_u \times \overline{x}_v) \, du \, dv =$$

$$\iint_{Duv} (F_1(\overline{x}(u,v)), F_2(\overline{x}(u,v)), F_3(\overline{x}(u,v))) \cdot \left(J\left(\frac{y\,z}{u\,v}\right), -J\left(\frac{x\,z}{u\,v}\right), J\left(\frac{x\,y}{u\,v}\right)\right) \, du \, dv$$

$$\iint_{Duv} \left[F_1(\overline{x}(u,v)) \, J\left(\frac{y\,z}{u\,v}\right) + F_2(\overline{x}(u,v)) \, J\left(\frac{x\,z}{u\,v}\right) + F_3(\overline{x}(u,v)) \, J\left(\frac{x\,y}{u\,v}\right)\right] \, du \, dv =$$

$$\iint_{Duv} \left[F_1 \, dy \, dz + F_2 \, dx \, dz + F_3 \, dx \, dy\right]$$

Supongamos que $\overline{F}: D \subset \mathbf{R}^3 \to \mathbf{R}^3$ describe la rapidez y dirección del flujo de un fluido en cada punto de una región D. Usando la integral de superficie definiremos el flujo por unidad de área y tiempo a través de una superficie $\Sigma \subset D$ (regular, simple y orientada).

Se pueden presentar distintos casos, por ejemplo, si Σ fuese plana y \overline{F} constante, entonces el flujo es igual a F_n $A(\Sigma)$ donde F_n es la componente del campo normal a la superficie. Como $F_n = \overline{F} \cdot \overline{n}$, entonces la expresión del flujo es:

$$\phi = \overline{F} \cdot \overline{n} A(\Sigma)$$

Si ahora tenemos una superficie que no es plana, expresada como:

$$\Sigma = \{ \overline{x} \in \mathbf{R}^3 \mid \overline{x} = \overline{x}(u, v), (u, v) \in D_{uv} \},$$

realizamos una partición de D_{uv} y calculamos para cada (u_k, v_k) el correspondiente $\overline{x}(u_k, v_k)$. Con estos valores encontramos $\overline{F}(\overline{x}(u_k, v_k))$ y $\overline{n}(\overline{x}(u_k, v_k))$. Entonces podremos encontrar la componente del campo normal a la superficie en cada "rectángulo" de la partición, esto es:

$$F_n(\overline{x}(u_k, v_k)) y d\Sigma = ||\overline{x_u} \times \overline{x_v}|| du dv$$

Asi podemos calcular

$$\sum_{k} \phi_{k} = \sum_{k} F_{n}(\overline{x}(u_{k}, v_{k})) \quad ||\overline{x}_{u} \times \overline{x}_{v}||_{(u_{k}, v_{k})} du dv$$

Tomando el límite cuando la norma de la partición tiende a cero:

$$\lim_{||P|| \to 0} \sum_{k} \phi_{k} = \iint_{Duv} \overline{F} \cdot \overline{n} \quad ||\overline{x_{u}} \times \overline{x_{v}}|| \, du \, dv$$

Se define flujo a través de una superficie Σ a:

$$\iint_{\Sigma} \overline{F} = \iint_{Duv} \overline{F}(\overline{x}(u,v) \cdot (\overline{x_u} \times \overline{x_v}) \, du \, dv$$

Supongamos que el flujo está dado por:

$$\overline{F} = \left(\frac{x}{x^2 + y^2 + z^2}, \frac{y}{x^2 + y^2 + z^2}, \frac{z}{x^2 + y^2 + z^2}\right)$$

Calcular el flujo de \overline{F} a través de la esfera de centro en el origen y radio a.

Expresando la superficie en coordenadas esféricas:

$$S_a = \{(x, y, z) \mid \overline{x} = (a\cos\theta \sin\varphi, a\sin\theta \sin\varphi, a\cos\varphi), \ 0 \le \theta \le 2\pi, \ 0 \le \varphi \le \pi\}$$

$$\iint_{\Sigma} \overline{F} \, d\Sigma = \iint_{D\theta\varphi} \overline{F}(\overline{x}(\theta,\varphi)) \cdot (\overline{x}_{\theta} \times \overline{x}_{\varphi}) \, d\theta \, d\varphi$$

Siendo:

$$\overline{F}(\overline{x}(\theta,\varphi)) = \left(\frac{\cos\theta \sin\varphi}{a}, \frac{\sin\theta \sin\varphi}{a}, \frac{\cos\varphi}{a}\right)$$

$$\overline{x_{\theta}} = (-a \operatorname{sen} \theta \operatorname{sen} \varphi, a \cos \theta \operatorname{sen} \varphi, 0) \wedge \overline{x_{\varphi}} = (a \cos \theta \cos \varphi, a \operatorname{sen} \theta \cos \varphi, -a \operatorname{sen} \varphi)$$

$$\overline{x_{\theta}} \times \overline{x_{\varphi}} = \begin{vmatrix} i & j & k \\ -a \operatorname{sen} \theta \operatorname{sen} \varphi & a \cos \theta \operatorname{sen} \varphi & 0 \\ a \cos \theta \cos \varphi & a \operatorname{sen} \theta \operatorname{cos} \varphi & -a \operatorname{sen} \varphi \end{vmatrix} = (-a^{2}(\operatorname{sen} \varphi)^{2} \cos \theta, -a^{2}(\operatorname{sen} \varphi)^{2} \operatorname{sen} \theta, -a^{2} \operatorname{sen} \varphi \cos \varphi)$$

$$\overline{F}(\overline{x}(\theta,\varphi)) \cdot (\overline{x}_{\theta} \times \overline{x}_{\varphi}) = -a \operatorname{sen} \varphi$$

Reemplazando en la integral:

$$a \int_0^{\pi} \int_0^{2\pi} \sin \varphi \, d\theta \, d\varphi = a \int_0^{\pi} \sin \varphi \, (\theta|_0^{2\pi}) \, d\varphi = 2\pi a (\cos \theta|_0^{\pi}) = 4\pi a$$

Ahora estamos en condiciones de vincular el cálculo diferencial y el vectorial. Esto lo haremos mediante tres teoremas muy importantes: el teorema de Green, el teorema de Gauss y el teorema de Stockes y veremos algunas aplicaciones físicas.

5. TEOREMAS INTEGRALES

5.1. Teorema de Green

Sean

- i) $P: D \subset \mathbb{R}^2 \to \mathbb{R}$, $Q: D \subset^2 \to \mathbb{R}$, $P, Q \in C^1$ en D: D abierto.
- ii) $S \subset \mathbb{R}^2$ una región elemental tal que $S \cup \partial S \subset D$
- iii) ∂S es una curva simple, cerrada, regular a trozos y recorrida en sentido positivo.

Entonces:

$$\oint_{\partial S} P(x,y) dx + Q(x,y) dy = \iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

Nótese que todas las hipótesis, conducen a asegurar la existencia de ambas integrales. O sea que a partir de las restricciones enumeradas tanto de los integrandos, como de las respectivas regiones de integración para ambas integrales, estas quedan determinadas.

Demostración.

Recordemos que $S \subset \mathbf{R}^2$ es una región elemental sii existen f_1, f_2, g_1, g_2 funciones continuas tales que

$$\overline{S} = \{(x,y) : a \le x \le b, f_1(x) \le y \le f_2(x)\} = \{(x,y) : c \le y \le d, g_1(y) \le x \le g_2(y)\}, a,b,c,d \in R$$

$$\begin{aligned} \operatorname{Sea} \, \partial S &= C_1 \cup C_2 \cup C_3 \cup C_4 = C_1' \cup C_2' \cup C_3' \cup C_4' \\ C_1 &= H \tilde{A} B C \text{ dada por } y = f_1(x) \\ C_2 &= \tilde{C} D \text{ dada por } x = b \\ C_1 &= D \tilde{E} F G \text{ dada por } y = f_2(x) \\ C_4 &= \tilde{G} H \text{ dada por } x = a \end{aligned} \quad \begin{cases} C_1' &= B \tilde{C} D E \text{ dada por } x = g_2(y) \\ C_2 &= E F \text{ dada por } y = d \\ C_1 &= F \tilde{G} H A \text{ dada por } x = g_1(y) \\ C_4 &= \tilde{G} H \text{ dada por } y = c \end{cases}$$

Resolveremos primero:

$$\iint_{S} \frac{\partial P}{\partial y} dx dy = \int_{a}^{b} \left[\int_{f_{1}(x)}^{f_{2}(x)} \frac{\partial P}{\partial y} dy \right] dx = \int_{a}^{b} \left[P\left(x, f_{2}(x)\right) - P\left(x, f_{1}(x)\right) \right] dx =$$

$$= -\int_{b}^{a} P\left(x, f_{2}(x)\right) dx - \int_{a}^{b} P\left(x, f_{1}(x)\right) dx = -\left[\int_{\mathcal{C}_{3}} P dx + \int_{\mathcal{C}_{1}} P dx \right]$$

Notar que:

$$\int_{\mathcal{C}_2} P \, dx = 0 \ \text{y} \ \int_{\mathcal{C}_4} P \, dx = 0$$

pues dx = 0 sobre C_2 y C_4 . Por lo tanto

$$-\iint_{S} \frac{\partial P}{\partial y} \, dy dx = \int_{\partial S} P \, dx$$

b) Resolviendo: $\iint_S \frac{\partial Q}{\partial x} dx dy$ obtenemos:

$$\iint_{S} \frac{\partial Q}{\partial x} \, dx dy = \int_{\partial S} Q \, dy$$

Sumando las expresiones anteriores nos queda:

$$\oint_{\partial S} P(x,y) dx + Q(x,y) dy = \iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

que es la tesis del Teorema.

Nota: El teorema de Green se puede generalizar a regiones S que son unión finita de regiones elementales: $S = S_1 \cup S_2 \cup \ldots \cup S_n$ con S_i regiones elementales $i = 1, 2, \cdots, n$ el teorema queda:

$$\iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \sum_{i=1}^{n} \iint_{S_{i}} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy =$$

$$= \sum_{i=1}^{n} \oint_{\partial S_i} P(x, y) \, dx + Q(x, y) \, dy = \oint_{\partial S} P(x, y) \, dx + Q(x, y) \, dy$$

Demostración: Ejercicio.

5.2. Teorema de la Divergencia (de Gauss):

Sea.

i) $\overline{F}: D \subset \mathbf{R}^3 \to \mathbf{R}^3; \overline{F} \in C^1 \ en \ D \ abierto.$

ii) V una región elemental de \mathbf{R}^3 , tal que $V \cup \partial V \subset D$;

iii) $\partial V = \Sigma$ sea una superficie orientada, simple, regular a trozos y cerrada.

Entonces:

$$\iiint_{V} \left(\nabla \cdot \overline{F} \right) dV = \iint_{\partial V = \Sigma} \left(\overline{F} \cdot \overline{n} \right) d\Sigma$$

o bien en notación abreviada:

$$\int_V \bigtriangledown \cdot \overline{F} = \int_{\partial V} F$$

Suele enunciarse: "El flujo de un campo \overline{F} a través de una superficie cerrada es igual a la integral sobre el volumen cerrado V de la divergencia del campo"

Nótese que todas las hipótesis, conducen a asegurar la existencia de ambas integrales. O sea que a partir de las restricciones enumeradas tanto de los integrandos, como de las respectivas regiones de integración para ambas integrales, estas quedan determinadas.

5.3. Teorema de Stockes

Sea
$$\overline{F}: D \subset \mathbf{R}^3 \to \mathbf{R}^3$$
 con

i) $\overline{F} \in C^1$ en D abierto .

ii)
$$\Sigma = \{\overline{x} \in \mathbf{R}^3 : z = f(x,y), (x,y) \in \Sigma_{xy}\} \text{ con } f \in \mathbb{C}^2 \text{ en } \Sigma_{xy}$$

Además Σ es una superficie orientada; con $\Sigma \cup \partial \Sigma \subset D$ y $\partial \Sigma$ una curva simple, regular, que "orienta a Σ ".

 $(iii)\Sigma_{xy}\subset \mathbf{R}^2$ región plana par la cuál es válida el Teorema de Green

Entonces:

$$\oint_{\mathcal{C}=\partial\Sigma} \overline{F} \cdot d\overline{x} = \iint_{\Sigma} (\nabla \wedge \overline{F}) \cdot \overline{n} \, d\Sigma$$

o en notación simplificada:

$$\int_{\Sigma} (\nabla \wedge \overline{F}) = \int_{\partial \Sigma} \overline{F}$$

Este teorema dice: "La circulación de un campo vectorial \overline{F} sobre una curva cerrada es igual al flujo del rotor del campo a través de una superficie que se apoya sobre la curva".

5.4. Ejercicios de aplicación del Teorema de Green

Verificar el Teorema de Green para

$$P(x,y) = x$$
 y $Q(x,y) = xy$

con S el disco unitario $x^2 + y^2 \le 1$

Solución:

Resolvamos primero la integral curvilínea de la fórmula de Green. Para ello, habrá que parametrizar la frontera de la región S simbolizada ∂S : $\begin{cases} \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) = (\cos t, \sin t) \,,\, 0 \leq t \leq 2\pi \} \\ \partial S = \{\overline{x} \mid (x,y) =$

$$\oint_{\partial S} P(x,y) \, dx + Q(x,y) \, dy = \int_0^{2\pi} \cos t \quad (-\sin t dt \quad) + \cos t \sin t \, (\cos t dt \,)$$

$$= \int_0^{2\pi} \cos t \, (-\sin t) dt + \int_0^{2\pi} \cos^2 t \sin t dt$$

$$= \frac{\cos^2 t}{2} \Big|_0^{2\pi} + -\frac{\cos^3 t}{3} \Big|_0^{2\pi} = 0$$

■ El otro miembro de la fórmula

$$\iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy = \iint_{S} (y - 0) dx dy = \int_{C.V.Polares} \int_{0}^{2\pi} \sin \theta d\theta \int_{0}^{1} \rho^{2} d\rho = 0$$

con lo que se verifica la fórmula de Green.

Una aplicación importante del Teorema de Green es el **cálculo de áreas por integrales curvilíneas** sobre la frontera de la superficie cuya área queremos evaluar. En efecto, siendo

$$\oint_{\partial S} P(x,y) dx + Q(x,y) dy = \iint_{S} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy$$

quisiéramos que la integral del segundo miembro exprese el área de S, pues $A(S) = \iint_S dxdy$. Eligiendo entonces $\partial Q = \partial P$

$$Q=x \;\; {\rm y} \;\; P=-y \;, \; {\rm tendremos} \; \left(rac{\partial Q}{\partial x} - rac{\partial P}{\partial y}
ight) = 2 \, {\rm con \; lo \; cual}$$

$$A(S) = \frac{1}{2} \oint_{\partial S} x \, dy - y \, dx = \iint_{S} dx dy$$

Como ejemplo de la ventaja que esta fórmula ofrece, calculemos el área de la superficie encerrada por el hipocicloide cuya ecuación vectorial es $(a\cos^3\theta, a\sin^3\theta)$ con $0 \le \theta \le 2\pi$

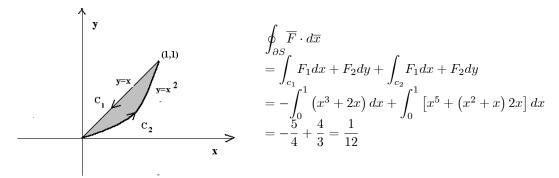
$$\begin{split} A(S) &= \frac{1}{2} \oint_{\partial S} x \, dy - y \, dx \\ &= \frac{1}{2} \int_{0}^{2\pi} \left[a \cos^{3}\theta \left(3a \sin^{2}\theta \cos\theta \right) - a \sin^{3}\theta \left(-3a \cos^{2}\theta \sin\theta \right) \right] \mathrm{d}\theta \\ &= \frac{3}{2} a^{2} \int_{0}^{2\pi} \left(\sin^{2}\theta \cos^{4}\theta + \sin^{4}\theta \cos^{2}\theta \right) \mathrm{d}\theta \\ &= \frac{3}{2} a^{2} \int_{0}^{2\pi} \sin^{2}\theta \cos^{2}\theta d\theta = \frac{3}{8} a^{2} \int_{0}^{2\pi} \sin^{2}2\theta \, \mathrm{d}\theta \\ &= \frac{3}{8} a^{2} \int_{0}^{2\pi} \left(\frac{1 - \cos 4\theta}{2} \right) \mathrm{d}\theta = \frac{3}{8} \pi a^{2} \end{split}$$

La forma vectorial del teorema de Green es

$$\oint_{\partial S} \overline{F} \cdot d\overline{x} = \iint_{S} \left(\nabla \wedge \overline{F} \right) . \overline{k} \, dx dy$$

verifique esta fórmula para $F = (xy^2, y + x)$ en la región del primer cuadrante encerrada por las curvas $y = x^2$ e y = x.

1 Calculemos el primer miembro de la igualdad para las respectivas curvas recorridas en sentido positivo



2 $\left(\bigtriangledown \land \ \overline{F} \right).\overline{k} = 1 - 2xy$ y el segundo miembro resulta

$$\int \int_{S} \left(\bigtriangledown \wedge \ \overline{F} \right) . \overline{k} \, dx dy = \int_{0}^{1} \int_{x^{2}}^{x} \left(1 - 2xy \right) dy dx = \frac{1}{12}$$

verificándose la igualdad.

5.5. Ejercicios de aplicación del Teorema de Gauss o de la Divergencia

Usar el Teorema de la Divergencia

$$\iiint_V (\bigtriangledown \cdot \overline{F}) \, dV = \iint_{\partial V = \Sigma} (\overline{F} \cdot \overline{n}) \, d\Sigma$$

para calcular $\iint_{\partial V=\Sigma} (\overline{F} \cdot \overline{n}) d\Sigma$ siendo Σ la superficie de la esfera de ecuación $x^2 + y^2 + z^2 = 1$ y $F = (2x, y^2, z^2)$ Recordando que el volumen de la esfera unitaria es $\frac{4}{3}\pi$ calculamos

$$\begin{split} \iiint_{V} (\bigtriangledown \cdot \overline{F}) \, dV &= \iiint_{V} \left(2 + 2y + 2z \right) dV \\ &= 2 \iiint_{V} dV + 2 \iiint_{V} y dV + 2 \iiint_{V} z dV \\ &= 2 \left(\frac{4}{3} \pi \right) + 0 + 0 = \frac{8}{3} \pi \end{split}$$

Evaluar usando el teorema de la divergencia para la esfera unitaria

$$\iint_{\partial V - \Sigma} (x^2 + y + z) \, d\Sigma$$

En este caso $(x^2 + y + z) = \overline{F} \cdot \overline{n}$. Siendo \overline{n} la normal a la esfera, es decir $\overline{n} = (x, y, z)$ se cumplirá que

$$\begin{cases} F_1 x = x^2 \\ F_2 y = y \\ F_3 z = z \end{cases} \Longrightarrow \overline{F} = (x, 1, 1) \quad \text{y} \quad \nabla \cdot \overline{F} = 1$$

con lo cual

$$\iint_{\partial V = \Sigma} (x^2 + y + z) \, d\Sigma = \iint_{\partial V = \Sigma} (\overline{F} \cdot \overline{n}) \, d\Sigma$$
$$= \iiint_{V} (\nabla \cdot \overline{F}) \, dV$$
$$= \iiint_{V} dV = \frac{4}{3}\pi$$

Evaluar $\oint_{\Sigma} (\overline{F} \cdot \overline{n}) d\Sigma$ con $F = (xy^2, x^2y, y)$ y Σ la superficie del cilindro $x^2 + y^2 = 1$ acotado por los planos z = 1 y z = -1 que constituyen también caras de la superficie cerrada.

Podríamos hacer el cálculo de la integral pedida,, pero resultará mas fácil aplicar el teorema de la Divergencia: $\oint_{\Sigma} (\overline{F} \cdot \overline{n}) d\Sigma = \iiint_{V} (\nabla \cdot \overline{F}) dV$ resultando

$$\begin{split} \iiint_{V} \left(\bigtriangledown \cdot \overline{F} \right) dV &= \iiint_{V} \left(y^2 + x^2 + 0 \right) \, dV = \int_{-1}^{1} \left[\iint_{x^2 + y^2 \le 1} \left(y^2 + x^2 \right) dx dy \right] dz \\ &= 2 \iint_{x^2 + y^2 < 1} \left(y^2 + x^2 \right) dx dy \underset{\text{C.V.Polares}}{=} \int_{0}^{2\pi} \left(\int_{0}^{1} r^3 dr \right) d\theta = \frac{1}{2} \pi \end{split}$$

La Ley de Gauss para superficies cerradas Σ a las cuales se puede aplicar el Teorema de la Divergencia y tales que el $(0,0,0) \notin \Sigma$, se enuncia:

$$\oint_{\Sigma} \frac{\overline{r} \cdot \overline{n}}{r} d\Sigma = \begin{cases}
4\pi \text{ si } \Sigma \text{ encierra al } (0,0,0) \\
0 \text{ si } \Sigma \text{ no encierra al } (0,0,0)
\end{cases}$$

siendo $\overline{r} = (x, y, z)$.

Esta ley tiene importantes aplicaciones a la física. El potencial entre un punto de carga Q y el (0,0,0) está dado por

$$\phi(x, y, z) = \frac{Q}{4\pi r} = \frac{Q}{4\pi \sqrt{x^2 + y^2 + z^2}}$$

y le corresponde un campo eléctrico

$$E = -\nabla \phi = \frac{Q}{4\pi} \left(\frac{\overline{r}}{r^3} \right)$$

y la Ley de Gauss establece que el flujo del campo eléctrico a través de la superficie cerrada Σ , $\oint_{\Sigma} E.\overline{n} \, d\Sigma$ es igual a la carga Q encerrada por Σ y es cero si la superficie Σ no encierra cargas eléctricas. Para una distribución de cargas continuas se define la densidad de carga

$$\rho = \operatorname{div} E = \nabla . E$$

Así el Teorema de Gauss se expresa

$$\oint_{\Sigma=\partial V} E.\overline{n}\,d\Sigma = \int_V \rho dV = Q$$

es decir el flujo del campo a través de una superficie cerrada es igual al total de la carga encerrada por la superficie.

5.6. Ejercicios de aplicación del Teorema de Stokes o del Rotor

Use el Teorema de Stokes para evaluar la integral de línea

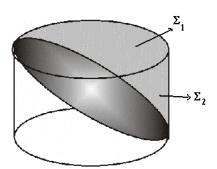
$$\int_C -y^3 dx + x^3 dy - z^3 dz$$

siendo C la intersección

del cilindro
$$x^2 + y^2 = 1$$

y el plano $x + y + z = 1$

recorrida en sentido de que su proyección en el plano xy sea positiva.



Teorema de Stokes:

$$\oint_{\mathcal{C}=\partial\Sigma} \overline{F} \cdot d\overline{x} = \iint_{\Sigma} (\nabla \wedge \overline{F}) \cdot \overline{n} \, d\Sigma$$
donde $\Sigma = \Sigma_1 \smile \Sigma_2$

1. Siendo $F=(-y^3,x^3,-z^3)\Rightarrow\nabla\wedge\overline{F}=(0,0,3x^2+3y^2).$ luego

$$\iint_{\Sigma} (\nabla \wedge \overline{F}) \cdot \overline{n} \, d\Sigma = \iint_{\Sigma_1} (0, 0, 3x^2 + 3y^2) \cdot (0, 0, 1) d\Sigma + \iint_{\Sigma_2} (0, 0, 3x^2 + 3y^2) \cdot (x, y, 0) d\Sigma$$
$$= \iint_{\Sigma_1} (3x^2 + 3y^2) \, d\Sigma$$

como $(\Sigma_1)_{xy} = \left\{(x,y) \ / \ x^2 + y^2 \leq 1\right\}$ y su normal es $\overline{n} = (0,0,1) = (\cos\alpha,\cos\beta,\cos\gamma)$

$$\iint_{\Sigma_1} (3x^2 + 3y^2) d\Sigma = \iint_{(\Sigma_1)_{xy}} 3(x^2 + y^2) |\sec \gamma| dx dy = \iint_{(\Sigma_1)_{xy}} 3(x^2 + y^2) dx dy$$

y usando polares

$$\iint_{\Sigma} (\nabla \wedge \overline{F}) \cdot \overline{n} \, d\Sigma = 3 \int_{0}^{1} \int_{0}^{2\pi} r^{3} d\theta dr = \frac{3\pi}{2}$$

2. Verifiquemos este resultado calculando directamente $\int_C -y^3 dx + x^3 dy - z^3 dz$. La curva C puede parametrizarse $(\cos t, \sin t, 1 - \cos t - \sin t)$ y la integral queda

$$\int_{C} -y^{3} dx + x^{3} dy - z^{3} dz = \int_{0}^{2\pi} \left[\left(-\sin^{3} t \right) (-\sin t) + (\cos t)^{3} \cos t - (1 - \cos t - \sin t)^{3} (\sin t - \cos t) \right] dt =$$

$$= \int_{0}^{2\pi} \left(\sin^{4} t + \cos^{4} t \right) dt - \underbrace{\int_{0}^{2\pi} \left(1 - \cos t - \sin t \right)^{3} (\sin t - \cos t) dt}_{0} = \int_{0}^{2\pi} \left(\sin^{4} t + \cos^{4} t \right) dt = \frac{1}{2} \int_{0}^{2\pi} \left(1 + \cos^{2} 2t \right) dt =$$

$$= \pi + \int_0^{2\pi} \cos^2 2t dt = \pi + \frac{1}{4} \int_0^{2\pi} (1 + \cos 4t) dt = \frac{3\pi}{2}$$

$$\operatorname{donde} \left\{ \begin{array}{l} \sin^2 t = \frac{1 - \cos 2t}{2} \\ \cos^2 t = \frac{1 + \cos 2t}{2} \end{array} \right. \Rightarrow \sin^4 t + \cos^4 t = \frac{1}{4} \left[\left(1 - \cos 2t \right)^2 + \left(1 + \cos 2t \right)^2 \right] = \frac{1}{2} \left(1 + \cos^2 2t \right)$$